首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi Y  Kang J  Lin W  Fan P  Jia Z  Yao S  Wang W  Zheng R 《Biochimica et biophysica acta》1999,1472(1-2):279-289
The repair effects on deoxynucleotide radical cations of phenylpropanoid glycosides (PPGs) and their analogs, isolated from a Chinese folk medicinal herb, were studied using the pulse radiolysis technique. The radical cations of deoxynucleotides were formed by the reaction of SO4*- with deoxynucleotides. On pulse irradiation of a nitrogen saturated deoxynucleotide aqueous solution containing 20 mM K2S2O8, 200 mM t-BuOH and one of the PPGs or their analogs, the transient absorption spectra of the radical cations of nucleotide decayed with the formation of those of the radical cation of PPGs or their analogs within several tens of microseconds after electron pulse irradiation. The result indicates that deoxynucleotide radical cations can be repaired by PPGs or their analogs. The rate constants of the repair reactions were determined to be 0.48-1.1 x 10(9), 0.64-1.80 x 10(9) and 2.12-4.4 x 10(9) M(-1) s(-1) for dAMP, dGMP and dCMP radical cations respectively. It is obvious that the rate constants of the repair reaction depend on the number of phenolic hydroxyl groups contained in the PPGs and their analogs. A deeper understanding of this new repair mechanism will undoubtedly help researchers design strategies to prevent and/or intervene more effective in free radical related diseases.  相似文献   

2.
Limbs from embryonic mice labeled with radioactive proline either in vitro or in vivo readily synthesized hydroxyproline-containing peptides, the majority of which were of a molecular size less than intact collagen α-chains. The hydroxyproline isomers detected in these peptides included trans-3-hydroxyproline, trans-4-hydroxyproline, and cis-4-hydroxyproline. The abundance of small peptide material containing these hydroxyproline isomers is unusual in that as much as 85% is present in such forms at 10 days gestation when the limb is initially forming and 35% at 14 days when the limb is fully developed. The identification of small molecular weight hydroxyproline-containing peptides in limbs removed from embryos labeled in vivo indicate they are not organ culture artifacts.  相似文献   

3.
Time-resolved in situ radiolysis ESR (electron spin resonance, equivalently EPR, electron paramagnetic resonance) studies have shown that the scavenging of radiolytically produced hydroxyl radical in nitrous oxide-saturated aqueous solutions containing 2 mM DMPO is essentially quantitative (94% of the theoretical yield) at 100 micros after the electron pulse [1]. This result appeared to conflict with earlier results using continuous cobalt-60 gamma radiolysis and hydrogen peroxide photolysis, where factors of 35 and 33% were obtained, respectively [2,3]. To investigate this discrepancy, nitrogen-saturated aqueous solutions containing 15 mM DMPO were cobalt-60 gamma irradiated (dose rate = 223 Gy/min) for periods of 0.25-6 min, and ESR absorption spectra were observed approximately 30 s after irradiation. A rapid, pseudo-first-order termination reaction of the protonated DMPO-hydrated electron adduct (DMPO-H) with DMPO-OH was observed for the first time. The rate constant for the reaction of DMPO-H with DMPO-OH is 2.44 x 10(2) (+/- 2.2 x 10(1)) M(-1) s(-1). In low-dose radiolysis experiments, this reaction lowers the observed yield of DMPO-OH to 44% of the radiation-chemical OH radical yield (G = 2.8), in good agreement with the earlier results [2,3]. In the absence of the DMPO-H radical, the DMPO-OH exhibits second-order radical termination kinetics, 2k(T) = 22 (+/- 2) M(-1) s(-1) at initial DMPO-OH concentrations > or = 13 microM, with first-order termination kinetics observed at lower concentrations, in agreement with earlier literature reports [4].  相似文献   

4.
The lactate dehydrogenase-catalyzed chain oxidation of NADH (LDH-NADH) by the superoxide radicals, HO2 and O2, has been studied with pulse radiolysis in the pH range between 4.5 and 9.0. The rate constants for the oxidation of the LDH-NADH by HO2 and O2 determined at 23 degrees are 1.2 times 10-6 M(-1) s(-1) and 3.6 times 10-4 M(-1) s(-1), respectively. The latter represents an activation of over 1000-fold by the enzyme. A chain reaction mechanism consistent with the results from these kinetic studies has been proposed.  相似文献   

5.
The position of 3-hydroxyproline was investigated in the triplet sequences of peptides released by collagenase digestion of a collagen preparation from kidney cortex. Composition of the collagen preparation indicated that it was largely or wholly of basement membrane origin. 3-Hydroxyproline was detected in only one sequence, the tripeptide, glycyl-3-hydroxyprolyl-4-hydroxyproline, which accounted for a major fraction of the total 3-hydroxyproline obtained in the peptides released by collagenase. Preliminary data, based on sequencing the peptide mixture released by collagenase treatment, suggested that, in contrast, 4-hydroxyproline occurs predominantly if not exclusively in the Y position of Gly-X-Y triplet sequences in the collagen preparation studied.  相似文献   

6.
R Asokan  G K Reddy  S C Dhar 《Life sciences》1992,51(13):1065-1071
The intracellular degradation of newly synthesized collagen was studied in both normal fibroblast and 3-methylcholanthrene induced fibrosarcoma cells. The degradation of newly synthesized collagen was examined using pulse-chase experiments and radioactive labelling techniques with [3H]-proline. The percentage of intracellular proteolysis of newly synthesized collagen was determined by measuring the formation of [3H]-hydroxyproline containing fragments in alcohol-soluble and insoluble fractions of normal cells and fibrosarcoma cells in the culture. The rate of degradation of newly formed collagen was then followed by estimating the radioactivity of [3H]-hydroxyproline at different intervals, during the chase period. The results clearly demonstrated that the percent of intracellular degradation of newly synthesized collagen was approximately three fold higher in fibrosarcoma cells than in normal fibroblast cells. The increased intracellular degradation of newly formed collagen was followed by an increase in the activity of cathepsin B and L in fibrosarcoma cells. The pulse-chase experiments indicated that the rate of degradation of newly synthesized collagen in fibrosarcoma cells is relatively greater than in normal fibroblast cells. In addition, as the labelling time increased, the formation of [3H]-hydroxyproline containing peptides in the ethanol-soluble fraction were found to be increased in both normal cells and fibrosarcoma cells, but the extent of formation was higher in fibrosarcoma cells compared to normal fibroblast cells. The results of this investigation collectively suggest that the intracellular degradation of newly synthesized collagen is enhanced in fibrosarcoma cells.  相似文献   

7.
The comparative changes in the amino acid composition of calf skin collagen after gamma-irradiation (doses from 100 to 1,000 Gy) in aqueous solutions under different gas atmospheres (O2, N2O, H2, vacuum) were investigated. The radiochemical yields of collagen amino acid residues destruction were determined. Under O2 (OH X, O2-) most of amino acids are destroyed with higher yields than under N2O. Leucine, valine, isoleucine, phenylalanine, arginine were the exception because of their high reaction rate constants with OH X and hydroxylation reactions. Under H2 (e-aq, H) and in vacuum (e-aq, OH X) the mechanism of collagen radiolysis changed due to its aggregation; the destruction of those amino acids which have high reaction rate constants with water radiolysis products was mainly observed (phenylalanine, tyrosine, histidine).  相似文献   

8.
The chain oxidation of lactate dehydrogenase-bound NADH initiated by superoxide radicals and propagated by oxygen was studied with pulse radiolysis. The kinetic parameters were re-evaluated in a system with carefully purified reagents (water and other chemicals) and in the presence of EDTA. The rate constant for the oxidation of the enzyme-bound NADH by O2- is calculated from the observed pseudo-first order disappearance of NADH and the chain length (molecules of NADH oxidized per O2- anion generated in the pulse). It is (1.0 +/- 0.2) X 10(5) M-1 S-1, consistent within a 13-fold variation in lactate dehydrogenase. NADH complex concentration and with varying chain length up to 6.1. Based on experiments with varying pH values from 4.5 to 9.0, the rate constant for oxidation of enzyme-bound NADH by HO2 is estimated to be 2.0 X 10(6) M-1 S-1.  相似文献   

9.
Reaction of horseradish peroxidase A2 and C with superoxide anion (O2-) has been studied using pulse radiolysis technique. Peroxidase C formed Compound I and an oxy form of the enzyme due to reaction of ferric enzyme with hydrogen peroxide (H2O2) and O2-, respectively. At low concentrations of O2- (less than 1 mM), O2- reacted with ferric peroxidase C nearly quantitatively and formation of H2O2 was negligible. The rate constant for the reaction was found to be increased below pH 6 and this phenomenon can be explained by assuming that HO2 reacts with peroxidase C more rapidly than O2-. In contrast the formation of oxyperoxidase could not be detected in the case of peroxidase A2 after the pulse, and only Compound I of the enzyme was formed. Peroxidase A2, however, produced the oxy form upon aerobic addition of NADH, suggesting that O2- can also react with peroxidase A2 to form the oxy form. The results at present indicate that the rate constant for the reaction of O2- with peroxidase A2 is smaller than 103 M-1.s-1.  相似文献   

10.
The effect of oxygen on the radiolysis of tyrosine in aqueous solutions was investigated by using gamma and pulsed electron irradiation. Steady-state radiolysis was reexamined and extended to include the effect of pH and determination of hydrogen peroxide. The loss of tyrosine, G(-Tyr), during irradiation and yields of 3,4-dihydroxyphenylalanine, G(DOPA), and hydrogen peroxide, G(H2O2), are determined in the pH range from 1 to 9. In the whole pH range used G(-Tyr) equals G(DOPA), and a higher G(H2O2) than expected was observed. In slightly acid and neutral media, both G(-Tyr) and G(DOPA) equal the yield of hydroxyl radicals, GOH, formed in the radiolysis of water, while the excess of hydrogen peroxide equals 1/2 GOH. Hence it was concluded that all tyrosine OH-adducts react with oxygen yielding peroxy radicals. In acid and alkaline media all measured yields decrease. This is caused by formation of tyrosine phenoxyl radicals (TyrO), which react with superoxide anion (O2-) and hydroperoxy (HO2) radicals regenerating tyrosine. By using pulse radiolysis K(TyrO + O2) less than or equal to 2 X 10(5) mol-1 dm3 s-1 and k(TyrO + O2-) = (1.7 +/- 0.2) X 10(9) mol-1 dm3 s-1 were determined. On the basis of the results, a reaction mechanism is proposed.  相似文献   

11.
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.  相似文献   

12.
The single 3-hydroxyproline residue in the collagen I polypeptides is essential for proper fibril formation and bone development as its deficiency leads to recessive osteogenesis imperfecta. The vertebrate prolyl 3-hydroxylase (P3H) family consists of three members, P3H1 being responsible for the hydroxylation of collagen I. We expressed human P3H2 as an active recombinant protein in insect cells. Most of the recombinant polypeptide was insoluble, but small amounts were also present in the soluble fraction. P3H1 forms a complex with the cartilage-associated protein (CRTAP) that is required for prolyl 3-hydroxylation of fibrillar collagens. However, coexpression with CRTAP did not enhance the solubility or activity of the recombinant P3H2. A novel assay for P3H activity was developed based on that used for collagen prolyl 4-hydroxylases (C-P4H) and lysyl hydroxylases (LH). A large amount of P3H activity was found in the P3H2 samples with (Gly-Pro-4Hyp)5 as a substrate. The Km and Ki values of P3H2 for 2-oxoglutarate and its certain analogues resembled those of the LHs rather than the C-P4Hs. Unlike P3H1, P3H2 was strongly expressed in tissues rich in basement membranes, such as the kidney. P3H2 hydroxylated more effectively two synthetic peptides corresponding to sequences that are hydroxylated in collagen IV than a peptide corresponding to the 3-hydroxylation site in collagen I. These findings suggest that P3H2 is responsible for the hydroxylation of collagen IV, which has the highest 3-hydroxyproline content of all collagens. It is thus possible that P3H2 mutations may lead to a disease with changes in basement membranes.  相似文献   

13.
We examined the effects of oral L-hydroxyproline (Hyp) on collagen in the body. After 2 weeks' administration of Hyp (0.5 or 1 g/kg) to F344 male rats, the soluble collagen content of the skin had increased, and the serum concentration of collagen peptides was correlated with the skin content of soluble collagen. This result suggests that oral Hyp augmented collagen metabolism.  相似文献   

14.
PZ-peptidase is an endopeptidase that cleaves the synthetic substrate developed for clostridial collagenase, 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg (PZ-peptide). The peptidase has been purified to homogeneity from chicken embryos. The enzyme has a pH optimum of 7.5 to 8.5, and isoelectric point of 5.0, and a molecular weight of 77,000. The kinetic parameters at pH 8 and 37 degrees are: Km = 2 X 10(-4) M and Vmax = 4.2 mumol/min/mg of protein. The enzyme is inhibited by p-hydroxymercuribenzoate (100%), N-ethylmaleimide (60%), and chelating agents (40 to 60%). Maximum activity is attained in the presence of reducing agents and Ca2+, Sr2+, or Mg2+. The peptidase has no detectable action on casein, serum albumin, collagen, collagen alpha chains, various collagen peptides (alpha1)(I)-CB2, alpha1(I)-CB3, alpha1(I)-CB4), (Gly-Pro-Pro)10, or (Gly-Pro-Pro)5. It does catalyze the hydrolysis of the Hyp--Gly bond in the 17-residue collagen peptide alpha1(II)-CB6-C2 and it partially digested a mixture of collagen peptides of molecular weight 350 to 2500. A role of this peptidase in collagen breakdown appears to be restricted to a late stage when degradation products would fall in the range of 5 to 30 residues.  相似文献   

15.
Because of its unique physical and chemical properties, rat tail tendon collagen has long been favored for crystallographic and biochemical studies of fibril structure. In studies of the distribution of 3-hydroxyproline in type I collagen of rat bone, skin, and tail tendon by mass spectrometry, the repeating sequences of Gly-Pro-Pro (GPP) triplets at the C terminus of α1(I) and α2(I) chains were shown to be heavily 3-hydroxylated in tendon but not in skin and bone. By isolating the tryptic peptides and subjecting them to Edman sequence analysis, the presence of repeating 3-hydroxyprolines in consecutive GPP triplets adjacent to 4-hydroxyproline was confirmed as a unique feature of the tendon collagen. A 1960s study by Piez et al. (Piez, K. A., Eigner, E. A., and Lewis, M. S. (1963) Biochemistry 2, 58-66) in which they compared the amino acid compositions of rat skin and tail tendon type I collagen chains indeed showed 3-4 residues of 3Hyp in tendon α1(I) and α2(I) chains but only one 3Hyp residue in skin α1(I) and none in α2(I). The present work therefore confirms this difference and localizes the additional 3Hyp to the GPP repeat at the C terminus of the triple-helix. We speculate on the significance in terms of a potential function in contributing to the unique assembly mechanism and molecular packing in tendon collagen fibrils and on mechanisms that could regulate 3-hydroxylation at this novel substrate site in a tissue-specific manner.  相似文献   

16.
The crucial role of collagen in fibrotic disorders has prompted attempts to develop drugs that inhibit collagen accumulation. Peptides containing the unphysiological amino acid 5-oxaproline (Opr) have recently been found to act as specific syncatalytic inactivators of pure prolyl 4-hydroxylase, the enzyme that catalyzes the formation of 4-hydroxyproline in collagens. The present study indicates that oxaproline-containing peptides benzyloxycarbonyl-Phe-Opr-Gly-benzyl ester (I) and benzyloxycarbonyl-Phe-Opr-Gly-ethyl ester (II) inactivate prolyl 4-hydroxylase in cultured human skin fibroblasts, peptide I being about twice as potent as peptide II. Inactivation by 50% was observed after culturing with about 20-40 microM concentrations of peptide I for 48 h. The inactivation appears to be specific, as no changes were found in the activities of two other intracellular enzymes of collagen synthesis, lysyl hydroxylase and galactosylhydroxylysyl glucosyltransferase. Synthesis of 4-hydroxyproline by the cells was markedly decreased, and 4-hydroxyproline-deficient procollagen accumulated intracellularly, whereas no changes were found in the incorporation of [14C]leucine into protein after culturing of the cells with a 30 microM concentration of peptide I for 48 h. No changes were seen in the viability of the cells or the release of lactate dehydrogenase from them into the culture medium. No significant changes were found in the steady-state levels of the mRNAs for the pro-alpha 1 chains of type I and type III procollagens or for the alpha and beta subunits of prolyl 4-hyroxylase or fibronectin after culturing with 75 microM peptide I for 48 h. The data indicate that inactivation of cellular prolyl 4-hydroxylase has marked effects on cellular 4-hydroxyproline formation and collagen secretion but no effects on the steady-state levels of mRNAs for type I and III procollagens or the two types of subunit of prolyl 4-hydroxylase.  相似文献   

17.
Getoff N 《Radiation research》2000,154(6):692-696
The spectroscopic and kinetic characteristics of beta-carotene radical cation (beta-carotene(.+)) were studied by pulse radiolysis in aerated DMSO solution. The buildup of beta-carotene(.+) with k(1) = (4.8 +/- 0.2) x 10(8) dm(3) mol(-1) s(-1) [lambda(max) = 942 nm, epsilon = (1.6 +/- 0.1) x 10(4) dm(3) mol(-1) cm(-1)] results from an electron transfer from beta-carotene to DMSO(.+). The beta-carotene(.+) species decays exclusively by first-order reaction, k = (2.1 +/- 0.1) x 10(3) s(-1), probably by two processes: (1) at low substrate concentration by hydrolysis and (2) at high concentrations also by formation of dimer radical cation (beta-carotene)(2)(.+). Under the experimental conditions, a small additional beta-carotene triplet-state absorption ((3)beta-carotene) in the range of 525 to 660 nm was observed. This triplet absorption is quenched by oxygen (k = 7 x 10(4) s(-1)), resulting in singlet oxygen ((1)O(2)), whose reactions can also lead to additional formation of beta-carotene(.+).  相似文献   

18.
The radiation-induced reactions of a water-soluble coumarin derivative, coumarin-3-carboxyl acid (C3CA), have been investigated in aqueous solutions by pulse radiolysis with a 35 MeV electron beam, final product analysis following (60)Co γ-irradiations and deterministic model simulations. Pulse radiolysis revealed that C3CA reacted with both hydroxyl radicals ((?)OH) and hydrated electrons (e(-) (aq)) with near diffusion-controlled rate constants of 6.8 × 10(9) and 2.1 × 10(10) M(-1) s(-1), respectively. The reactivity of C3CA towards O(2)(? -) was not confirmed by pulse radiolysis. Production of the fluorescent molecule, 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), was confirmed by final product analysis with a fluorescence spectrometer coupled to a high performance liquid chromatography (HPLC) system. Production yields of 7OH-C3CA following (60)Co γ-irradiations depended on the irradiation conditions and ranged from 0.025 to 0.18 (100 eV) (-1). Yield varied with saturating gas, additive and C3CA concentration, implying the presence of at least two pathways capable of providing 7OH-C3CA as a stable product following the scavenging reaction of C3CA with (?)OH, including a peroxidation/elimination sequence and a disproportionation pathway. A reaction mechanism for the two pathways was proposed and incorporated into a deterministic simulation, showing that the mechanism can explain experimentally measured 7OH-C3CA yields with a constant conversion factor of 4.7% from (?)OH scavenging to 7OH-C3CA production, unless t-BuOH was added.  相似文献   

19.
To facilitate the structural studies of invertebrate collagens, a sensitive and effective method was developed, using reverse-phase high-performance liquid chromatography for preparative isolation of the collagen subunits and their clostridial collagenase-derived peptides; the methods have been applied to Nereis cuticle collagen. The two subunits of denatured Nereis cuticle collagen, termed A and B, were initially separated by high-performance liquid chromatography. These polypeptides, with Mr of about 0.5 million, were each exhaustively digested with clostridial collagenase. The digest of the A subunit, which contains all of the uronic acid, was enriched for the uronic acid-containing glycopeptides by means of gel filtration. These glycopeptides were resolved into 23 major peaks, using reverse-phase HPLC, over a 5-h elution time, with an acetonitrile gradient (0-20%) containing 0.1% TFA. The amino acid composition data suggests that the peptides are of variable length, from 5 to 17 residues, while beta-elimination studies show that the uronic acid-containing moieties are all O-glycosidically linked to threonine residues, in the peptides examined. The amino acid sequence of one of the major glycopeptides was determined and found to be Gly-Hyp-Ala-Gly-Gly-Ile-Gly-Glu-Thr-Gly-Ala-Val-Gly-Leu-Hyp. The amino acid compositions of glycosylated and nonglycosylated peptides which had eluted, numbering about 100, showed a correspondence between hydrophobicity or hydrophilicity and emergence time from the column. We also found that the peptides most enriched in 4-hydroxyproline emerged earliest. These studies provide a foundation for elucidating the detailed structures of the large, unusual subunits of a well-characterized cuticle collagen.  相似文献   

20.
The cuticle collagen of the vestimentiferanRiftia pachyptila, an organism which is endemic to deep-sea hydrothermal vents, has several unusual properties including an extraordinary length (1.5 μm), a high thermal stability (37°C) in spite of a low 4-hydroxyproline content and an atypically high threonine content (20 mol%). We have now purified the constituent chain of cuticle collagen and show that it contains about 40% carbohydrate, which is mainly galactose, indicating that the chain has a molecular mass of approximately 750 kDa. Several large (30 to 150 kDa) fragments, which all contained carbohydrate, could be produced by cleavage with endoproteinase Lys-C, bacterial collagenase and cyanogen bromide (CNBr). Edman degradation of these and several smaller fragments was used to determine about 3000 sequence positions comprising 60% of the total triple-helical sequence. This demonstrated mainly typical Gly-X-Y triplet repeats with a few imperfections and a longer N-terminal non-triplet sequence. Most of the 4-hydroxyproline was found in triplet position X, where it decreases the stability of the triple helix. About 40% of the Y positions could not be identified, which correlated with a low abundance of threonine in the sequence and the demonstration of threonine in these positions after deglycosylation of several peptides by treatment with hydrofluoric acid. Matrix-assisted laser desorption ionisation mass spectrometry of selected peptides indicated that the blocked threonine residues are occupied by chains of one, two or three hexoses (presumably galactose). These glycosylated threonine residues in Y positions are therefore likely to replace 4-hydroxyproline as the major contributor to triple helix stabilization. Studies with a synthetic (Gly-Pro-Thr)10oligopeptide demonstrated a low thermal stability of its triple helix which emphasizes a crucial role of glycosylation for stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号