首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Phage T4 effects lysis by its holin T and its endolysin E. Lysis is inhibited (LIN) if the infected cell is subjected to secondary infections by T4 phage particles. The T4 rI gene is required for LIN in all hosts tested. Here, we show that a cloned rI gene can impose a T-specific LIN on T-mediated lysis in the context of the phage lambda infective cycle, in the absence of other T4 genes and without secondary infection by T4. Moreover, it is shown that the T holin accumulates in the membrane during LIN, forming SDS-resistant oligomers. We show by cross-linking experiments that a T-RI heterodimer is formed during LIN, demonstrating that RI belongs to the functional class of antiholins, such as the S107 protein of lambda, which heterodimerizes with its cognate holin, S105. Finally, we show that the addition of Ni(2+) ions to the medium can block lysis by a T protein hexahistidine-tagged at its C-terminus, suggesting that liganding of the periplasmic domain is sufficient to impose lysis inhibition. The results are discussed in terms of a model in which the LIN-inducing signal of the secondary infecting phage influences a conformational equilibrium assumed by RI in the periplasm.  相似文献   

2.
Genetic studies have established that lysis inhibition in bacteriophage T4 infections occurs when the RI antiholin inhibits the lethal hole-forming function of the T holin. The T-holin is composed of a single N-terminal transmembrane domain and a ~20 kDa periplasmic domain. It accumulates harmlessly throughout the bacteriophage infection cycle until suddenly causing permeabilization of the inner membrane, thereby initiating lysis. The RI antiholin has a SAR domain that directs its secretion to the periplasm, where it can either be inactivated and degraded or be activated as a specific inhibitor of T. Previously, it was shown that the interaction of the soluble domains of these two proteins within the periplasm was necessary for lysis inhibition. We have purified and characterized the periplasmic domains of both T and RI. Both proteins were purified in a modified host that allows disulfide bond formation in the cytoplasm, due to the functional requirement of conserved disulfide bonds. Analytical centrifugation and circular dichroism spectroscopy showed that RI was monomeric and exhibited ~80% alpha-helical content. In contrast, T exhibited a propensity to oligomerize and precipitate at high concentrations. Incubation of RI with T inhibits this aggregation and results in a complex of equimolar T and RI content. Although gel filtration analysis indicated a complex mass of 45 kDa, intermediate between the predicted 30 kDa heterodimer and 60 kDa heterotetramer, sedimentation velocity analysis indicated that the predominant species is the former. These results suggest that RI binding to T is necessary and sufficient for lysis inhibition.  相似文献   

3.
Bacteriophage T4 effects host lysis with a holin, T, and an endolysin, E. T and E accumulate in the membrane and cytoplasm, respectively, throughout the period of late gene expression. At an allele-specific time, T triggers to disrupt the membrane, allowing E to enter the periplasm and attack the peptidoglycan. T triggering can be blocked by secondary infections, leading to the state of lysis inhibition (LIN). LIN requires the T4 antiholin, RI, and is sensitive to the addition of energy poisons. T is unusual among holins in having a large C-terminal periplasmic domain. The rI gene encodes a polypeptide of 97 residues, of which 72 are predicted to be a periplasmic domain. Here, we show that the periplasmic domain of RI is necessary and sufficient to block T-mediated lysis. Moreover, when overexpressed, the periplasmic domain of T (T(CTD)) was found to abolish LIN in T4 infections and to convert wild-type (wt) T4 plaques from small and fuzzy edged to the classic "r" large, sharp-edged plaque morphology. Although RI could be detected in whole cells, attempts to monitor it during subcellular fractionation were unsuccessful, presumably because RI is a highly unstable protein. However, fusing green fluorescence protein (GFP) to the N terminus of RI created a more stable chimera that could be demonstrated to form complexes with wild-type T(CTD) and also with its LIN-defective T75I variant. These results suggest that the function of the unusual periplasmic domain of T is to transduce environmental information for the real-time control of lysis timing.  相似文献   

4.
t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an Nin-Cout topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; Nout-Cin) of the coliphage lambda and S68 (2 TMDs; Nin-Cin) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation.  相似文献   

5.
Phage lambda hybrids were constructed by inserting the t gene of phage T4 in place of the lambda holin gene, S. Induction of the hybrid phage resulted in lysis that was just as abrupt as, but occurred much earlier in the vegetative cycle than, that obtained with lambda, indicating that t is indeed a holin gene. Moreover, it was possible to impose lysis inhibition (LIN) on induction of the hybrid phage, but not of the parental lambda phage, by superinfection with LIN-competent T4. The imposition of the LIN state was found to depend on the allelic state of the rI and t genes of the superinfecting T4 phage, indicating that the LIN-sensitive state of the T holin is transient. Finally, induction of lysogens carrying both holin genes was shown to result in earlier triggering of lysis than with either holin gene alone. This result suggests that the two very dissimilar holins contribute additively to the physiology of the timing mechanism, or, less likely, that they interact to form one mass-action pool. In either case, these results imply a common pathway for holin timing and function.  相似文献   

6.
Like most phages with double-stranded DNA, phage T4 exits the infected host cell by a lytic process requiring, at a minimum, an endolysin and a holin. Unlike most phages, T4 can sense superinfection (which signals the depletion of uninfected host cells) and responds by delaying lysis and achieving an order-of-magnitude increase in burst size using a mechanism called lysis inhibition (LIN). T4 r mutants, which are unable to conduct LIN, produce distinctly large, sharp-edged plaques. The discovery of r mutants was key to the foundations of molecular biology, in particular to discovering and characterizing genetic recombination in T4, to redefining the nature of the gene, and to exploring the mutation process at the nucleotide level of resolution. A number of r genes have been described in the past 7 decades with various degrees of clarity. Here we describe an extensive and perhaps saturating search for T4 r genes and relate the corresponding mutational spectra to the often imperfectly known physiologies of the proteins encoded by these genes. Focusing on r genes whose mutant phenotypes are largely independent of the host cell, the genes are rI (which seems to sense superinfection and signal the holin to delay lysis), rIII (of poorly defined function), rIV (same as sp and also of poorly defined function), and rV (same as t, the holin gene). We did not identify any mutations that might correspond to a putative rVI gene, and we did not focus on the famous rII genes because they appear to affect lysis only indirectly.  相似文献   

7.
Double-stranded DNA phages require two proteins for efficient host lysis: the endolysin, a muralytic enzyme, and the holin, a small membrane protein. In an event that defines the end of the vegetative cycle, the lambda holin S acts suddenly to permeabilize the membrane. This permeabilization enables the R endolysin to attack the cell wall, after which cell lysis occurs within seconds. A C-terminal fusion of the R endolysin with full-length beta-galactosidase (beta-Gal) was tested for lytic competence in the context of the late-gene expression system of an induced lambda lysogen. Under these conditions, the hybrid R-beta-Gal product, an active tetrameric beta-Gal greater than 480 kDa in mass, was fully functional in lysis mediated by the S holin. Western blot analysis demonstrated that the lytic competence was not due to the proteolytic release of the endolysin domain of the R-beta-Gal fusion protein. The ability of this massive complex to be released by the S holin suggests that S causes a generalized membrane disruption rather than a regular oligomeric membrane pore. Similar results were obtained with an early lysis variant of the S holin and also in parallel experiments with the T4 holin, T, in an identical lambda context. However, premature holin lesions triggered by depolarization of the membrane were nonpermissive for the hybrid endolysin, indicating that these premature lesions constituted less-profound damage to the membrane. Finally, a truncated T holin functional in lysis with the endolysin is completely incompetent for lysis with the hybrid endolysin. A model for the formation of the membrane lesion within homo-oligomeric rafts of holin proteins is discussed.  相似文献   

8.
The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gramnegative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanin and i-spanin, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the outer membrane is to catalyze fusion of the inner and outer membranes.  相似文献   

9.
The mycobacteriophage Ms6 is a temperate double-stranded DNA (dsDNA) bacteriophage which, in addition to the predicted endolysin (LysA)-holin (Gp4) lysis system, encodes three additional proteins within its lysis module: Gp1, LysB, and Gp5. Ms6 Gp4 was previously described as a class II holin-like protein. By analysis of the amino acid sequence of Gp4, an N-terminal signal-arrest-release (SAR) domain was identified, followed by a typical transmembrane domain (TMD), features which have previously been observed for pinholins. A second putative holin gene (gp5) encoding a protein with a predicted single TMD at the N-terminal region was identified at the end of the Ms6 lytic operon. Neither the putative class II holin nor the single TMD polypeptide could trigger lysis in pairwise combinations with the endolysin LysA in Escherichia coli. One-step growth curves and single-burst-size experiments of different Ms6 derivatives with deletions in different regions of the lysis operon demonstrated that the gene products of gp4 and gp5, although nonessential for phage viability, appear to play a role in controlling the timing of lysis: an Ms6 mutant with a deletion of gp4 (Ms6(Δgp4)) caused slightly accelerated lysis, whereas an Ms6(Δgp5) deletion mutant delayed lysis, which is consistent with holin function. Additionally, cross-linking experiments showed that Ms6 Gp4 and Gp5 oligomerize and that both proteins interact. Our results suggest that in Ms6 infection, the correct and programmed timing of lysis is achieved by the combined action of Gp4 and Gp5.  相似文献   

10.
A zinc metalloprotease secreted by Vibrio vulnificus, an opportunistic human pathogen causing septicemia and wound infection, stimulates exocytotic histamine release from rat mast cells. This protease consists of two functional domains: the N-terminal domain that catalyzes proteolytic reaction and the C-terminal domain that promotes the association with a protein substrate or cell membrane. Like the intact protease, the N-terminal domain alone also induced histamine release from rat peritoneal mast cells in a dose- and time-dependent manner. However, the reaction induced was apparently weak and went on more slowly. The nickel-substituted protease or its N-terminal domain, each of which has the reduced proteolytic activity due to decreased affinity to a substrate, showed much less histamine-releasing activity. When injected into the rat dorsal skin, the N-terminal domain also evoked enhancement of the hypodermic vascular permeability, while the activity was comparable to that of the protease. Taken together, the protease may stimulate histamine release through the action of the catalytic center of the N-terminal domain on the target substance(s) on the mast cell membrane. The C-terminal domain may support the in vitro action of the N-terminal domain by coordination of the association of the protease with the membrane, but it may not modulate the in vivo action.  相似文献   

11.
lambda S, the prototype class I holin gene, encodes three potential transmembrane domains in its 107 codons, whereas 21 S, the class II prototype spans only 71 codons and encodes two transmembrane domains. Many holin genes, including lambda S and 21 S, have the "dual-start" regulatory motif at the N terminus, suggesting that class I and II holins have the same topology. The primary structure of 21 S strongly suggests a bitopic "helical-hairpin" topology, with N and C termini on the cytoplasmic side of the membrane. However, lambda S chimeras with an N-terminal signal sequence show Lep-dependent function, indicating that the N-terminal domain of S requires export. Here the signal sequence chimera is shown to be sensitive to the missense change A52V, which blocks normal S function. Moreover, cysteine-modification studies in isolated membranes using a collection of S variants with single-cysteine substitutions show that the positions in the core of the 3 putative transmembrane domains of lambda S are protected. Also, S proteins with single-cysteine substitutions in the predicted cytoplasmic and periplasmic loops are more efficiently labeled in inverted membrane vesicles and whole cells, respectively. These data constitute direct evidence that the holin S(lambda) has three transmembrane domains and indicate that class I and class II holins have different topologies, despite regulatory and functional homology.  相似文献   

12.
Ramanculov E  Young R 《Gene》2001,265(1-2):25-36
The t protein of bacteriophage T4 shares with other holins the ability to cause the formation of a lethal membrane lesion which allows the phage endolysin to attack the peptidoglycan. Moreover, T, like other holins, acts in a saltatory manner at a precisely programmed time in the vegetative cycle. Unlike other holins, however, T has the unique ability to postpone its lethal function in response to a secondary infection by a T-even phage during the vegetative cycle. A signal transduction system that responds to the secondary infection is thought to be encoded by some of the numerous r genes, defined by mutations that abolish this lysis-inhibition (LIN) response. The primary structure of T differs from two main structural patterns found in more than 30 orthologous groups of holins. Genetic approaches were taken to probe the t sequence for features involved in membrane localization, functional timing and LIN regulation. Gene fusion analysis indicates that T has a single TMD near the N-terminus, with the bulk of the protein residing in the periplasm. Mapping and phenotypic analysis of deletion and point mutations in t indicates that the periplasmic domain of T is the major determinant of the timing mechanism and is involved in the LIN response.  相似文献   

13.
Pneumococcal EJ-1 phage holin (EJh) is a hydrophobic polypeptide of 85 amino acid residues displaying lethal inner membrane disruption activity. To get an insight into holin structure and function, several peptides representing the different topological regions predicted by sequence analysis have been synthesized. Peptides were structurally characterized in both aqueous buffer and membrane environments, and their potential to induce membrane perturbation was determined. Among them, only the N-terminal predicted transmembrane helix increased the membrane permeability. This segment, only when flanked by the positive charged residues on its N-terminal side, which are present in the sequence of the full-length protein, folds into a major alpha-helix structure with a transmembrane preferential orientation. Fluorescein quenching experiments of N-terminal-labeled peptide evidenced the formation of oligomers of variable size depending on the peptideto-lipid molar ratio. The self-assembling tendency correlated with the formation of transmembrane pores that permit the release of encapsulated dextrans of various sizes. When analyzed by atomic force microscopy, peptide-induced membrane lesions are visualized as transbilayer holes. These findings are the first evidence for a lytic domain in holins and for the nature of membrane lesions caused by them.  相似文献   

14.
To determine the minimum requirement in the 76-residue leader sequence of pro-tumor necrosis factor (TNF) for membrane translocation across the endoplasmic reticulum (ER) and for the maturation of pro-TNF, we constructed pro-TNF mutants in which a part of the transmembrane domain of pro-TNF was directly linked to the N-terminus of the mature domain, and evaluated their translocational behavior across the ER-membrane and their secretion from the transfected cells. The in vitro translation/translocation assay involving a canine pancreatic microsomal membrane system including a mutant, Delta-75-47, -32-1, revealed that the N-terminal half of the transmembrane domain of pro-TNF consisting of 14 residues functioned as a cleavable signal sequence; it generated a cleaved form of TNF having a molecular mass similar to that of mature TNF. Analysis of the cleavage site by site-directed mutagenesis indicated that the site was inside the leader sequence of this mutant. When the mutant, Delta-75-47, -32-1, was expressed in COS-1 cells, efficient secretion of a biologically active soluble TNF was observed. Further deletion of the hydrophobic domain from this mutant inhibited the translocation, indicating that some extent of hydrophobicity is indispensable for the membrane translocation of the mature domain of TNF. Thus, the N-terminal half of the transmembrane domain of pro-TNF could function as a cleavable signal sequence when linked to the mature domain of TNF, and secretion of a biologically active secretory form of TNF could be achieved with this 14-residue hydrophobic segment. In intact pro-TNF, however, this 14-residue sequence could not function as a cleavable signal sequence during intracellular processing, indicating that the remainder of the 76-residue leader sequence of pro-TNF inhibits the signal peptide cleavage and thus enables the leader sequence to function as a type II signal-anchor sequence that generates a transmembrane form of TNF.  相似文献   

15.
The nucleotide sequence of the Clostridium thermocellum F1 xynC gene, which encodes the xylanase XynC, consists of 1,857 bp and encodes a protein of 619 amino acids with a molecular weight of 69,517. XynC contains a typical N-terminal signal peptide of 32 amino acid residues, followed by a 165-amino-acid sequence which is homologous to the thermostabilizing domain. Downstream of this domain was a family 10 catalytic domain of glycosyl hydrolase. The C terminus separated from the catalytic domain by a short linker sequence contains a dockerin domain responsible for cellulosome assembly. The N-terminal amino acid sequence of XynC-II, the enzyme purified from a recombinant Escherichia coli strain, was in agreement with that deduced from the nucleotide sequence although XynC-II suffered from proteolytic truncation by a host protease(s) at the C-terminal region. Immunological and N-terminal amino acid sequence analyses disclosed that the full-length XynC is one of the major components of the C. thermocellum cellulosome. XynC-II was highly active toward xylan and slightly active toward p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-cellobioside, p-nitrophenyl-beta-D-glucopyranoside, and carboxymethyl cellulose. The Km and Vmax values for xylan were 3.9 mg/ml and 611 micromol/min/mg of protein, respectively. This enzyme was optimally active at 80 degrees C and was stable up to 70 degrees C at neutral pHs and over the pH range of 4 to 11 at 25 degrees C.  相似文献   

16.
To investigate the relationship between the degradation rate of a protein in Escherichia coli and its thermal stability in vitro, we constructed a set of variants of the N-terminal domain of lambda repressor with a wide range of melting temperatures. Pulse-chase experiments showed that, within this set, the proteins that are most thermally stable have the longest intracellular half-lives and vice versa. Moreover, second-site mutations which act directly or indirectly to increase the thermodynamic stability of the native N-terminal domain were found to suppress the intracellular degradation of one of the unstable mutants. These data suggest that thermal stability is, indeed, a key determinant of the proteolytic susceptibility of this protein in the cell. It is not the sole determinant, however, as sequences at the extreme C terminus of the N-terminal domain can influence proteolytic sensitivity without affecting the stability of the native structure. We propose that the thermal stability of the N-terminal domain of lambda repressor is an important determinant of its proteolytic sensitivity because degradation proceeds primarily from the unfolded form and that sequence determinants within the unfolded chain influence whether the unfolded protein will be a good substrate for proteolytic enzymes.  相似文献   

17.
Upon infecting populations of susceptible host cells, T-even bacteriophages maximize their yield by switching from lysis at about 25 to 35 min at 37 degrees C after infection by a single phage particle to long-delayed lysis (lysis inhibition) under conditions of sequential infection occurring when free phages outnumber host cells. The timing of lysis depends upon gene t and upon one or more rapid-lysis (r) genes whose inactivation prevents lysis inhibition. t encodes a holin that mediates the movement of the T4 endolysin though the inner cell membrane to its target, the cell wall. The rI protein has been proposed to sense superinfection. Of the five reasonably well characterized r genes, only two, rI and rV, are clearly obligatory for lysis inhibition. We show here that rV mutations are alleles of t that probably render the t protein unable to respond to the lysis inhibition signal. The tr alleles cluster in the 5' third of t and produce a strong r phenotype, whereas conditional-lethal t alleles produce the classical t phenotype (inability to lyse) and other t alleles produce additional, still poorly understood phenotypes. tr mutations are dominant to t+, a result that suggests specific ways to probe T4 holin function.  相似文献   

18.
The molecular mechanisms underlying protein turnover and enzyme regulation in the peroxisomal matrix remain largely unknown. Trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon) are newly identified peroxisomal matrix proteins that harbor both a serine protease-like domain and a peroxisome-targeting signal 1 (PTS1) sequence. Tysnd1 processes several PTS1-containing proteins and cleaves N-terminal presequences from PTS2-containing protein precursors. Here we report that knockdown of Tysnd1, but not PsLon, resulted in accumulation of endogenous β-oxidation enzymes in their premature form. The protease activity of Tysnd1 was inactivated by intermolecular self-conversion of the 60-kDa form to 15- and 45-kDa chains, which were preferentially degraded by PsLon. Peroxisomal β-oxidation of a very long fatty acid was significantly decreased by knockdown of Tysnd1 and partially lowered by PsLon knockdown. Taken together, these data suggest that Tysnd1 is a key regulator of the peroxisomal β-oxidation pathway via proteolytic processing of β-oxidation enzymes. The proteolytic activity of oligomeric Tysnd1 is in turn controlled by self-cleavage of Tysnd1 and degradation of Tysnd1 cleavage products by PsLon.  相似文献   

19.
The soluble proteins of the eggs of the coleopteran insect Anthonomus grandis Boheman, the cotton boll weevil, consist almost entirely of two vitellin types with Mrs of 160,000 and 47,000. We sequenced their N-terminal ends and one internal cyanogen bromide fragment of the large vitellin and compared these sequences with the deduced amino acid sequence from the vitellogenin gene. The results suggest that both the boll weevil vitellin proteins are products of the proteolytic cleavage of a single precursor protein. The smaller 47,000 M vitellin protein is derived from the N-terminal portion of the precursor adjacent to an 18 amino acid signal peptide. The cleavage site between the large and small vitellins at amino acid 362 is adjacent to a pentapeptide sequence containing two pairs of arginine residues. Comparison of the boll weevil sequences with limited known sequences from the single 180,000 Mr honey bee protein show that the honey bee vitellin N-terminal exhibits sequence homology to the N-terminal of the 47,000 Mr boll weevil vitellin. Treatment of the vitellins with an N-glycosidase results in a decrease in molecular weight of both proteins, from 47,000 to 39,000 and from 160,000 to 145,000, indicating that about 10–15% of the molecular weight of each vitellin consists of N-linked carbohydrate. The molecular weight of the deglycosylated large vitellin is smaller than that predicted from the gene sequence, indicating possible further proteolytic processing at the C-terminal of that protein. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号