首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbioses between chemolithoautotrophic bacteria and the major macrofaunal species found at hydrothermal vents have been reported for numerous sites in the Pacific Ocean. We present microscopical and enzymatic evidence that methylotrophic bacteria occur as intracellular symbionts in a new species of mytilid mussel discovered at the Mid-Atlantic Ridge hydrothermal vents. Two distinct ultrastructural types of gram-negative procaryotic symbionts were observed within gill epithelial cells by transmission electron microscopy: small coccoid or rod-shaped cells and larger coccoid cells with stacked intracytoplasmic membranes typical of methane-utilizing bacteria. Methanol dehydrogenase, an enzyme diagnostic of methylotrophs, was detected in the mytilid gills, while tests for ribulose-1,5-bisphosphate carboxylase, the enzyme diagnostic of autotrophy via the Calvin cycle, were negative. Stable carbon isotope values (δ13C) of mytilid tissue (−32.7 and −32.5% for gill and foot tissues, respectively) fall within the range of values reported for Pacific vent symbioses but do not preclude the use of vent-derived methane reported to be isotopically heavy relative to biogenically produced methane.  相似文献   

2.
Abstract. Bathymodiolus platifrons , a chemosynthetic mussel from cold seeps off Japan, relies for its nutrition on the productivity of methylotrophic or methanotrophic endosymbionts. High densities of bacterial symbionts appearing to be type I methanotrophs were observed in transmission electron micrographs of gill tissues. Methanol dehydrogenase activity in gill tissue from a single individual was positive compared to non-methanotrophic control samples, indicating a high potential for methanotrophy. Stable isotopic ratios of carbon in symbiont-containing gill tissue, as well as host tissues, were extremely depleted in 13C, and similar to values reported for other methanotrophic species. TEMs of gill tissue showing symbionts in various stages of digestion support the hypothesis that carbon transfer from symbionts to B. platifrons occurs through intracellular digestion of the symbionts. Discovery of methane- or methanolbased symbioses in B. platifrons from cold seeps in Sagami Bay extends the range of such symbioses to include cold seeps and hydrothermal vents, and supports the idea that environmental methane levels control the distribution of these symbioses.  相似文献   

3.
A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta 8, delta 10, and delta 11. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol [11.0% 4 alpha-methyl-cholesta-8(14),24-dien-3 beta-ol] was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3 beta-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4% for total tissue, -60.6 and -62.4% for total lipids, -60.2 and-63.9% for phospholipid fatty acids, and -71.8 and 73.8% for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria (R.E. Summons, L.L. Jahnke, and Z. Roksandic, Geochim. Cosmochim. Acta 58: 2853-2863, 1994) further supporting the conversion of the bacteria methylsterol pool.  相似文献   

4.
A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta 8, delta 10, and delta 11. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol [11.0% 4 alpha-methyl-cholesta-8(14),24-dien-3 beta-ol] was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3 beta-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4% for total tissue, -60.6 and -62.4% for total lipids, -60.2 and-63.9% for phospholipid fatty acids, and -71.8 and 73.8% for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria (R.E. Summons, L.L. Jahnke, and Z. Roksandic, Geochim. Cosmochim. Acta 58: 2853-2863, 1994) further supporting the conversion of the bacteria methylsterol pool.  相似文献   

5.
Larvae of the chironomid Stictochironomus pictulus were collected from Lake Biwa, central Japan. Both the fatty acid composition of the total lipid fraction and the carbon stable isotope ratios of whole larvae were determined. Larvae showed δ13C values of −57.4‰ to −62.4‰, similar to the values of methane recorded from the lake sediments. A high level of monounsaturated fatty acids (MUFAs; approximately 50% of total fatty acids) and an extremely low level of n-3 series polyunsaturated fatty acids (PUFAs) in the total lipids of S. pictulus indicated a predominantly bacterial nutrition for this species. Moreover, chironomid tissues contained large amounts of the Type I methanotroph group-specific fatty acid, 16:1(n-8) (approximately 8% of total fatty acids). This is the first time such a fatty acid biomarker has been described from freshwater invertebrates. The data suggest that S. pictulus larvae directly feed upon methanotrophic bacteria.  相似文献   

6.
Host–symbiont relationships in hydrothermal vent ecosystems, supported by chemoautotrophic bacteria as primary producers, have been extensively studied. However, the process by which densely populated co‐occurring invertebrate hosts form symbiotic relationships with bacterial symbionts remains unclear. Here, we analyzed gill‐associated symbiotic bacteria (gill symbionts) of five co‐occurring hosts, three mollusks (“Bathymodiolusmanusensis, B. brevior, and Alviniconcha strummeri) and two crustaceans (Rimicaris variabilis and Austinograea alayseae), collected together at a single vent site in the Tonga Arc. We observed both different compositions of gill symbionts and the presence of unshared operational taxonomic units (OTUs). In addition, the total number of OTUs was greater for crustacean hosts than for mollusks. The phylogenetic relationship trees of gill symbionts suggest that γ‐proteobacterial gill symbionts have coevolved with their hosts toward reinforcement of host specificity, while campylobacterial Sulfurovum species found across various hosts and habitats are opportunistic associates. Our results confirm that gill symbiont communities differ among co‐occurring vent invertebrates and indicate that hosts are closely related with their gill symbiont communities. Considering the given resources available at a single site, differentiation of gill symbionts seems to be a useful strategy for obtaining nutrition and energy while avoiding competition among both hosts and gill symbionts.  相似文献   

7.
The discovery of bacterium-bivalve symbioses capable of utilizing methane as a carbon and energy source indicates that the endosymbionts of hydrothermal vent and cold seep bivalves are not restricted to sulfur-oxidizing chemoautotrophic bacteria but also include methanotrophic bacteria. The phylogenetic origin of methanotrophic endosymbionts and their relationship to known symbiotic and free-living bacteria, however, have remained unexplored. In situ localization and phylogenetic analysis of a symbiont 16S rRNA gene cloned from the gills of a recently described deep-sea mussel species demonstrate that this symbiont represents a new taxon which is closely related to free-living, cultivable Type I methanotrophic bacteria. This symbiont is distinct from known chemoautotrophic symbionts. Thus, despite compelling similarities between the symbioses, chemoautotrophic and methanotrophic symbionts of marine bivalves have independent phylogenetic origins.  相似文献   

8.
Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy, comparative 16S rRNA analysis, and fluorescence in situ hybridization indicated that this Bathymodiolus sp. lives in a dual symbiosis with sulfide- and methane-oxidizing bacteria. A distinct distribution pattern of the symbiotic bacteria in the gill epithelium was observed, with the thiotrophic symbiont dominating the apical region and the methanotrophic symbiont more abundant in the basal region of the bacteriocytes. No variations in this distribution pattern or in the relative abundances of the two symbionts were observed in mussels collected from three different mussel beds with methane concentrations ranging from 0.7 to 33.7 μM. The 16S rRNA sequence of the methanotrophic symbiont is most closely related to those of known methanotrophic symbionts from other bathymodiolid mussels. Surprisingly, the thiotrophic Bathymodiolus sp. 16S rRNA sequence does not fall into the monophyletic group of sequences from thiotrophic symbionts of all other Bathymodiolus hosts. While these mussel species all come from vents, this study describes the first thiotrophic sequence from a seep mussel and shows that it is most closely related (99% sequence identity) to an environmental clone sequence obtained from a hydrothermal plume near Japan.  相似文献   

9.
The caridean shrimp Rimicaris exoculata dominates the fauna at several Mid-Atlantic Ridge hydrothermal vent sites. This shrimp has an enlarged gill chamber, harboring a dense ectosymbiotic community of chemoautotrophic bacteria associated with mineral oxide deposits. Until now, their acquisition is not fully understood. At three hydrothermal vent sites, we analyzed the epibionts diversity at different moult stages and also in the first stages of the shrimp life (eggs, hatched eggs (with larvae) and juveniles). Hatched eggs associated with young larvae were collected for the first time directly from gravid females at the Logachev vent site during the Serpentine cruise. An approach using 16S rRNA clone libraries, scanning and transmission electron microscopy, and fluorescent in situ hybridization was used. Molecular results and microscope observations indicated a switch in the composition of the bacterial community between early R. exoculata life cycle stage (egg libraries dominated by the Gammaproteobacteria) and later stages (juvenile/adult libraries dominated by the Epsilonproteobacteria). We hypothesized that the epibiotic phylotype composition could vary according to the life stage of the shrimp. Our results confirmed the occurrence of a symbiosis with Gammaproteobacteria and Epsilonproteobacteria, but more complex than previously assumed. We revealed the presence of active type-I methanotrophic bacteria colonizing the cephalothorax of shrimps from the Rainbow site. They were also present on the eggs from the Logachev site. This could be the first ‘epibiotic'' association between methanotrophic bacteria and hydrothermal vent crustacean. We discuss possible transmission pathways for epibionts linked to the shrimp life cycle.  相似文献   

10.
Fatty acids in deep hydrothermal vent bivalves have been analyzed. Their composition is completely different from that of a littoral mussel collected in the Mediterranean sea. The distribution of fatty acids in the littoral mussel is characterized by a predominance of polyunsaturated fatty acids (20:5n-3, 22:6n-3) reflecting the planktonic origin of the food. Vent bivalve fatty acid distribution is dominated by an abundance of the monounsaturated acids (double bond in the n-7 position) 16:1n-7, 18:1n-7, and 20:1n-7 which are clearly of bacterial origin and give an indication of the symbiotic bacterial activity in the bivalves. Differences between the fatty acid composition of the bivalves from two hydrothermal sites (13 degrees N and Galapagos) and differences between the mantle and the gill were observed and are discussed with respect to vent activities at the two sites and species metabolic capacities as a function of ecological conditions.  相似文献   

11.
Hydrothermal vent gastropods of the genus Alviniconcha are unique among metazoans in their ability to derive their nutrition from chemoautotrophic γ- and -proteobacterial endosymbionts. Although host-symbiont relationships in Alviniconcha gastropods from the Central Indian Ridge in the Indian Ocean and the Mariana Trough in the Western Pacific have been studied extensively, host-symbiont relationships in Alviniconcha gastropods from the Southwest Pacific remain largely unknown. Phylogenetic analysis using mitochondrial cytochrome c oxidase subunit I gene sequences of host gastropods from the Manus, North Fiji, and Lau Back-Arc Basins in the Southwest Pacific has revealed a new host lineage in a Alviniconcha gastropod from the Lau Basin and the occurrence of the host lineage Alviniconcha sp. type 2 in the Manus Basin. Based on 16S rRNA gene sequences of bacterial endosymbionts, two γ-proteobacterial lineages and one -proteobacterial lineage were identified in the present study. The carbon isotopic compositions of the biomass and fatty acids of the gastropod tissues suggest that the γ- and -proteobacterial endosymbionts mediate the Calvin-Benson cycle and the reductive tricarboxylic acid cycle, respectively, for their chemoautotrophic growth. Coupling of the host and symbiont lineages from the three Southwest Pacific basins revealed that each of the Alviniconcha lineages harbors different bacterial endosymbionts belonging to either the γ- or -Proteobacteria. The host specificity exhibited in symbiont selection provides support for the recognition of each of the host lineages as a distinct species. The results from the present study also suggest the possibility that Alviniconcha sp. types 1 and 2 separately inhabit hydrothermal vent sites approximately 120 m apart in the North Fiji Basin and 500 m apart in the Manus Basin.  相似文献   

12.
The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Vesicomyidae) depends for its nutrition on sulfur-oxidizing symbiotic bacteria housed in its gill tissues. This symbiont is transmitted vertically between generations via the clam's eggs; however, it remains uncertain whether occasionally symbionts are horizontally transmitted or acquired from the environment. If symbionts are transmitted strictly vertically through the egg cytoplasm, inheritance of symbiont lineages should behave as if coupled to the host's maternally inherited mitochondrial DNA. This coupling would be obscured, however, with low rates of horizontal or environmental transfers, the equivalent of recombination between host lineages. Population genetic analyses of C. magnifica clams and associated symbionts from eastern Pacific hydrothermal vents clearly supported the hypothesis of strictly maternal cotransmission. Host mitochondrial and symbiont DNA sequences were coupled in a clam population that was polymorphic for both genetic markers. These markers were not similarly coupled with sequence variation at a nuclear gene locus, as expected for a randomly mating sexual population. Phylogenetic analysis of the two cytoplasmic genes also revealed no evidence for recombination. The tight association between vesicomyid clams and their vertically transmitted bacterial endosymbionts is phylogenetically very young (<50 million years) and may serve as a model for the origin and evolution of eukaryotic organelles.  相似文献   

13.
One year after impoundment in January 1994, methanotrophic bacteria in Petit Saut Reservoir (French Guiana) were active at the oxic-anoxic interface. This activity was revealed by the sudden extinction of diffusive methane emission (600 metric tons of CH4 · day−1 for the whole lake surface area, i.e., 360 km2). Lifting of inhibition was suspected. After reviewing the potential inhibitors of this physiological guild (O2, NH4+, sulfides) and considering the similarities with nitrifiers, we suggest that sunlight influenced the methanotrophic bacteria. On the basis of phospholipid analysis, only a type II methanotrophic community was identified in the lake. Both growth and methanotrophic activity of an enriched culture, obtained in the laboratory, were largely inhibited by illumination over 150 microeinsteins · m−2 · s−1. These results were confirmed on a pure culture of Methylosinus trichosporium OB3B. In situ conditions showed that water transparency was quite stable in 1994 and 1995 and that the oxycline moved steadily deeper until January 1995. Considering the mean illumination profile during this period, we showed that removal of methanotrophic growth inhibition could only occur below a 2-m depth. The oxycline reached this level in October 1994, allowing methanotrophic bacteria to develop and to consume the entire methane emission 4 months later.  相似文献   

14.
The hydrothermal vent mussel Bathymodiolus sp. is demonstrated to incorporate inorganic CO2 from sea water. After ≈24 h incubation with H14CO2 the major part of the radioactivity is incorporated into macromolecules mostly in proteins but also in a notable lipidic fraction. 77 to 98% of this radioactivity is found in the gill and autoradiographs show that CO2 fixation is only observed in cells containing high concentrations of bacteria. The results endorse the hypothesis that the associated bacteria might provide a nutritional source for the mussel.The mussel is also able to absorb and incorporate dissolved amino acids. Heterotrophic processes involving dissolved organic matter may interfere with the autotrophic pathways. Beside its capability of feeding on particulate material, the mussel may be thus able to live on reduced carbon and nitrogen compounds synthesized by its associated bacteria as well as on dissolved organic compounds present in sea water. The effective participation of the different processes is probably related to the ecological conditions experienced by the mussel in vent areas.  相似文献   

15.
Deep-sea Bathymodiolus mussels, depending on species and location, have the capacity to host sulfur-oxidizing (thiotrophic) and methanotrophic eubacteria in gill bacteriocytes, although little is known about the mussels' mode of symbiont acquisition. Previous studies of Bathymodiolus host and symbiont relationships have been based on collections of nonoverlapping species across wide-ranging geographic settings, creating an apparent model for vertical transmission. We present genetic and cytological evidence for the environmental acquisition of thiotrophic endosymbionts by vent mussels from the Mid-Atlantic Ridge. Open pit structures in cell membranes of the gill surface revealed likely sites for endocytosis of free-living bacteria. A population genetic analysis of the thiotrophic symbionts exploited a hybrid zone where two Bathymodiolus species intergrade. Northern Bathymodiolus azoricus and southern Bathymodiolus puteoserpentis possess species-specific DNA sequences that identify both their symbiont strains (internal transcribed spacer regions) and their mitochondria (ND4). However, the northern and southern symbiont-mitochondrial pairs were decoupled in the hybrid zone. Such decoupling of symbiont-mitochondrial pairs would not occur if the two elements were transmitted strictly vertically through the germ line. Taken together, these findings are consistent with an environmental source of thiotrophic symbionts in Bathymodiolus mussels, although an environmentally “leaky” system of vertical transmission could not be excluded.  相似文献   

16.
Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The δ-13C values of these lipids (δ-13C = −89 to −58‰) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.  相似文献   

17.
The abundance and activity of methane-oxidizing bacteria (MOB) in the water column were investigated in three lakes with different contents of nutrients and humic substances. The abundance of MOB was determined by analysis of group-specific phospholipid fatty acids from type I and type II MOB, and in situ activity was measured with a 14CH4 transformation method. The fatty acid analyses indicated that type I MOB most similar to species of Methylomonas, Methylomicrobium, and Methylosarcina made a substantial contribution (up to 41%) to the total bacterial biomass, whereas fatty acids from type II MOB generally had very low concentrations. The MOB biomass and oxidation activity were positively correlated and were highest in the hypo- and metalimnion during summer stratification, whereas under ice during winter, maxima occurred close to the sediments. The methanotroph biomass-specific oxidation rate (V) ranged from 0.001 to 2.77 mg CH4-C mg−1 C day−1 and was positively correlated with methane concentration, suggesting that methane supply largely determined the activity and biomass distribution of MOB. Our results demonstrate that type I MOB often are a large component of pelagic bacterial communities in temperate lakes. They represent a potentially important pathway for reentry of carbon and energy into pelagic food webs that would otherwise be lost as evasion of CH4.  相似文献   

18.
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.  相似文献   

19.
During leaf senescence, macromolecule breakdown occurs and nutrients are translocated to support growth of new vegetative tissues, seeds, or other storage organs. In this study, we determined the fatty acid levels and profiles in Arabidopsis (Arabidopsis thaliana), Brachypodium distachyon, and switchgrass (Panicum virgatum) leaves during natural senescence. In young leaves, fatty acids represent 4% to 5% of dry weight and approximately 10% of the chemical energy content of the leaf tissues. In all three species, fatty acid levels in leaves began to decline at the onset of leaf senescence and progressively decreased as senescence advanced, resulting in a greater than 80% decline in fatty acids on a dry weight basis. During senescence, Arabidopsis leaves lost 1.6% of fatty acids per day at a rate of 2.1 μg per leaf (0.6 μg mg−1 dry weight). Triacylglycerol levels remained less than 1% of total lipids at all stages. In contrast to glycerolipids, aliphatic surface waxes of Arabidopsis leaves were much more stable, showing only minor reduction during senescence. We also examined three Arabidopsis mutants, acx1acx2, lacs6lacs7, and kat2, which are blocked in enzyme activities of β-oxidation and are defective in lipid mobilization during seed germination. In each case, no major differences in the fatty acid contents of leaves were observed between these mutants and the wild type, indicating that several mutations in β-oxidation that cause reduced breakdown of reserve oil in seeds do not substantially reduce the degradation of fatty acids during leaf senescence.  相似文献   

20.
The vent mussel Bathymodiolus azoricus, host thioautotrophic and methanotrophic bacteria, in their gills and complementary, is able to digest suspended organic matter. But the involvement of nutritional status in metal uptake and storage remains unclear. The influence of B. azoricus physiological condition on its response to the exposure of a mixture of metals in solution is addressed. Mussels from the Menez Gwen field were exposed to 50 μg L− 1 Cd, plus 25 μg L− 1 Cu and 100 μg L− 1 Zn for 24 days. Four conditions were tested: (i) mussels harboring both bacteria but not feed, (ii) harboring only methanotrophic bacteria, (iii) without bacteria but fed during exposure and (iv) without bacteria during starvation. Unexposed mussels under the same conditions were used as controls. Eventual seasonal variations were assessed. Metal levels were quantified in subcellular fractions in gills and digestive gland. Metallothionein levels and condition indices were also quantified. Gill sections were used for fluorescence in situ hybridization (FISH) to assess the temporal distribution of symbiotic associations. Starvation damages metal homeostasis mechanisms and increase the intracellular Zn and MT levels function. There is a clear metallic competition for soluble and insoluble intracellular ligands at each condition. Seasonal variations were observed at metal uptake and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号