首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ran GTPase regulates mitotic spindle assembly.   总被引:28,自引:0,他引:28  
Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.  相似文献   

2.
M Dasso  T Seki  Y Azuma  T Ohba    T Nishimoto 《The EMBO journal》1994,13(23):5732-5744
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.  相似文献   

3.
RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins.  相似文献   

4.
Ran-binding protein 3 (RanBP3) is an approximately 55-kDa protein that functions as a cofactor for Crm1-mediated nuclear export. RanBP3 stimulates export by enhancing the affinity of Crm1 for Ran.GTP and cargo. However, important additional functions for this cofactor may exist. We now report that RanBP3 associates with the Ran-specific guanine nucleotide exchange factor, regulator of chromosome condensation 1 (RCC1). This interaction was stimulated by the addition of Ran; moreover, Ran.GDP, Ran.GTP, and Ran without nucleotide could all stimulate complex formation between RanBP3 and RCC1 even though binding of Ran.GDP to RanBP3 alone was undetectable. RanBP3 could also promote binding of Crm1 to RCC1 in the presence of Ran. Binding of RanBP3 to RCC1 increased the catalytic activity of RCC1 toward Ran, and importantly, the ability of RanBP3 to stimulate RCC1 was not affected by the presence of Crm1. These data indicate that RanBP3 acts as a scaffold protein to promote the efficient assembly of export complexes. By tethering Crm1 to catalytically enhanced RCC1, RanBP3 may lower the entropic barrier for the loading of Ran.GTP onto Crm1. We propose that this provides an additional mechanism by which RanBP3 facilitates export.  相似文献   

5.
During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport‐competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well‐established function in nuclear transport. RNAi‐mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/β, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N‐terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild‐type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.  相似文献   

6.
The small Ras-related GTP binding and hydrolyzing protein Ran has been implicated in a variety of processes, including cell cycle progression, DNA synthesis, RNA processing, and nuclear-cytosolic trafficking of both RNA and proteins. Like other small GTPases, Ran appears to function as a switch: Ran-GTP and Ran-GDP levels are regulated both by guanine nucleotide exchange factors and GTPase activating proteins, and Ran-GTP and Ran-GDP interact differentially with one or more effectors. One such putative effector, Ran-binding protein 1 (RanBP1), interacts selectively with Ran-GTP. Ran proteins contain a diagnostic short, acidic, carboxyl-terminal domain, DEDDDL, which, at least in the case of human Ran, is required for its role in cell cycle regulation. We show here that this domain is required for the interaction between Ran and RanBP1 but not for the interaction between Ran and a Ran guanine nucleotide exchange factor or between Ran and a Ran GTPase activating protein. In addition, Ran lacking this carboxyl-terminal domain functions normally in an in vitro nuclear protein import assay. We also show that RanBP1 interacts with the mammalian homolog of yeast protein RNA1, a protein involved in RNA transport and processing. These results are consistent with the hypothesis that Ran functions directly in at least two pathways, one, dependent on RanBP1, that affects cell cycle progression and RNA export, and another, independent of RanBP1, that affects nuclear protein import.  相似文献   

7.
Ran is a Ras-related GTPase that is essential for the transport of protein and RNA between the nucleus and the cytoplasm. Proteins that regulate the GTPase cycle and subcellular distribution of Ran include the cytoplasmic GTPase-activating protein (RanGAP) and its co-factors (RanBP1, RanBP2), the nuclear guanine nucleotide exchange factor (RanGEF), and the Ran import receptor (NTF2). The recent identification of the Saccharomyces cerevisiae protein Mog1p as a suppressor of temperature-sensitive Ran mutations suggests that additional regulatory proteins remain to be characterized. Here, we describe the identification and biochemical characterization of murine Mog1, which, like its yeast orthologue, is a nuclear protein that binds specifically to RanGTP. We show that Mog1 stimulates the release of GTP from Ran, indicating that Mog1 functions as a guanine nucleotide release factor in vitro. Following GTP release, Mog1 remains bound to nucleotide-free Ran in a conformation that prevents rebinding of the guanine nucleotide. These properties distinguish Mog1 from the well characterized RanGEF and suggest an unanticipated mechanism for modulating nuclear levels of RanGTP.  相似文献   

8.
Ran is a small GTPase that is required for protein import, mRNA export, and the maintenance of nuclear structures. To gain a better understanding of Ran's role in the nucleus, we have sought to use Xenopus egg extracts for the purification and characterization of proteins from egg extracts bound with a high affinity to a glutathione-S-transferase-Ran fusion protein (GST-Ran). We found that GST-Ran associates specifically with at least 10 extract proteins. We determined the identifies of six Ran-interacting proteins (Rips), and found that they include RanBP2/Nup358, Nup153, Importin beta, hsc70, RCC1, and RanBP1. On the basis of peptide sequence, a seventh Rip (p88) seems to be similar but not identical to Fug1/RanGAP1, the mammalian Ran-GTPase-activating protein. Gel filtration analysis of endogenous extract proteins suggests that Importin beta acts as a primary GTP-Ran effector. Both Ran and Importin beta are coimmunoprecipitated by anti-p340RanBP2 antibodies in the presence of nonhydrolyzable GTP analogues, suggesting that Ran-Importin beta complexes interact with p340RanBP2. Two other Rips, p18 and p88, are coprecipitated with p340RanBP2 in a nucleotide-independent manner. Analysis of the Ran-GTPase pathway in Xenopus extracts allows the examination of interactions between Ran-associated proteins under conditions that resemble in vivo conditions more closely than in assays with purified components, and it thereby allows additional insights into the molecular mechanism of nuclear transport.  相似文献   

9.
Ran GTPase is involved in several aspects of nuclear structure and function, including nucleocytoplasmic transport and nuclear envelope formation. Experiments using Xenopus egg extracts have shown that generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 also plays roles in mitotic spindle assembly. Here, we have examined the localization and function of RCC1 in mitotic human cells. We show that RCC1, either the endogenous protein or that expressed as a fusion with green fluorescent protein (GFP), is localized predominantly to chromosomes in mitotic cells. This localization requires an N-terminal lysine-rich region that also contains a nuclear localization signal and is enhanced by interaction with Ran. Either mislocalization of GFP-RCC1 by removal of the N-terminal region or the expression of dominant Ran mutants that perturb the GTP/GDP cycle causes defects in mitotic spindle morphology, including misalignment of chromosomes and abnormal numbers of spindle poles. These results indicate that the generation of Ran-GTP in the vicinity of chromosomes by RCC1 is important for the fidelity of mitotic spindle assembly in human cells. Defects in this system may result in abnormal chromosome segregation and genomic instability, which are characteristic of many cancer cells.  相似文献   

10.
The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.  相似文献   

11.
The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kβ) showed an aberrant nuclear morphology, we studied the contribution of PI3Kβ to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kβ regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kβ controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kβ regulates the nuclear envelope through upstream regulation of RCC1 and Ran.  相似文献   

12.
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.  相似文献   

13.

Background  

Regulator of chromosome condensation 1 (RCC1) is the guanine nucleotide exchange factor for Ran GTPase. Localised generation of Ran-GTP by RCC1 on chromatin is critical for nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Both the N-terminal tail of RCC1 and its association with Ran are important for its interaction with chromatin in cells. In vitro, the association of Ran with RCC1 induces a conformational change in the N-terminal tail that promotes its interaction with DNA.  相似文献   

14.
The Ran GTPase is required for nuclear assembly, nuclear transport, spindle assembly, and mitotic regulation. While the first three processes are relatively well understood, details of Ran's role in mitotic progression remain obscure. We have found that elevated levels of Ran's exchange factor (RCC1) abrogate the spindle assembly checkpoint in Xenopus egg extracts, restore APC/C activity, and disrupt the kinetochore localization of checkpoint regulators, including Mad2, CENP-E, Bub1, and Bub3. Depletion of Ran's GTPase activating protein (RanGAP1) and its accessory factor (RanBP1) similarly abrogates checkpoint arrest. By contrast, the addition of RanGAP1 and RanBP1 to extracts with exogenous RCC1 restores the spindle checkpoint. Together, these observations suggest that the spindle checkpoint is directly responsive to Ran-GTP levels. Finally, we observe a clear wave of RCC1 association to mitotic chromosomes at the metaphase-anaphase transition in normal cycling extracts, suggesting that this mechanism has an important role in unperturbed cell cycles.  相似文献   

15.
Ran is an essential GTPase that controls nucleocytoplasmic transport, mitosis, and nuclear envelope formation. These functions are regulated by interaction of Ran with different partners, and by formation of a Ran-GTP gradient emanating from chromatin. Here, we identify a novel level of Ran regulation. We show that Ran is a substrate for p21-activated kinase 4 (PAK4) and that its phosphorylation on serine-135 increases during mitosis. The endogenous phosphorylated Ran and active PAK4 dynamically associate with different components of the microtubule spindle during mitotic progression. A GDP-bound Ran phosphomimetic mutant cannot undergo RCC1-mediated GDP/GTP exchange and cannot induce microtubule asters in mitotic Xenopus egg extracts. Conversely, phosphorylation of GTP-bound Ran facilitates aster nucleation. Finally, phosphorylation of Ran on serine-135 impedes its binding to RCC1 and RanGAP1. Our study suggests that PAK4-mediated phosphorylation of GDP- or GTP-bound Ran regulates the assembly of Ran-dependent complexes on the mitotic spindle.  相似文献   

16.
The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit. Here, we show that RanBP1 downregulation takes place in mid to late telophase, concomitant with the reformation of nuclei. Mild RanBP1 overexpression in murine cells causes RanBP1 to persist in late mitosis and hinders a set of events underlying the telophase to interphase transition, including chromatin decondensation, nuclear expansion and nuclear lamina reorganisation. Moreover, the reorganisation of nuclear pores fails associated with defective nuclear relocalisation of NLS cargoes. Co-expression of importin beta, together with RanBP1, however mitigates these defects. Thus, RanBP1 downregulation is required for nuclear reorganisation pathways operated by importin beta after mitosis.  相似文献   

17.
A human protein that is 92% identical and 97% homologous at the amino acid level to RanBP1 from mouse was identified by the two-hybrid method, using two types of target cDNAs fused to sequences encoding the GAL4 DNA-binding domain. The target cDNAs encoded the human Ran/TC4 and human RCC1 proteins, respectively. An in vitro binding experiment showed that RanBP1 binds to RCC1 with the aid of Ran. Partially purified, GST-fused RanBP1 inhibited RCC1-stimulated guanine nucleotide release from Ran in vitro. Consistent with this in vitro finding, overproduction of human RanBP1 was detrimental to growth of tsBN2, a temperature-sensitive BHK21 hamster cell line defective in the RCC1 gene, and inhibited the growth of the Saccharomyces cerevisiae rcc1 mutants prp20, mtr1 and srm1. The specific effect of RanBP1 on rcc1 cells was confirmed by the finding that overproduction of RanBP1 induces significant levels of expression of a FUS1-lacZ gene and an increase in mating efficiencies in a ste3, pheromone receptor-deficient yeast mutant. This phenotype is similar to the srm1, a mutant isolated as a suppressor that restores mating to receptorless mutants. These findings indicate that RanBP1 negatively regulates RCC1.  相似文献   

18.
It was show11 that nuclear reassembly was induced by small pieces of DNA fragments in cell-free extracts ofXenopus. In an attempt to learn the relationship between the nuclear reassembly and nucleosome/chromatin assembly, limited amounts of CM-Cellulose are used to eliminate the capacity of the egg extract S-150 to assemble chromatin. while the forming of nucleosomes is checked with DNA supercoiling by plasmid DNA pBR322 incubated in the extract, and further analysed by micrococcal nuclease digestion. This depleted extract is then used to induce nuclear reassembly around demembraned sperms with membrane vesicles. It is found that CM-Cellulose depletes histones H2A and H2B efficiently and blocks the assembly of nucleosomes, the demembraned sperms are yet reconstituted into nuclei in the treated S-150, although the chromatin in reassembled nuclei does not produce protected DNA fragments when digested with micrococcal nuclease. It suggests that in the cell-free system ofXenopus, DNA can be formed into nuclei without assembly of nucleosomes or chromatin.  相似文献   

19.
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号