首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
High-resolution electron microscopy of polarly flagellated bacteria revealed that their flagella originate at a circular, differentiated portion of the cytoplasmic membrane approximately 25 nm in diameter. The flagella also have discs attaching them to the cell wall. These attachment discs are extremely resistant to lytic damage and are firmly bound to the flagella. The cytoplasm beneath the flagellum contains a granulated basal body about 60 nm in diameter, and a specialized polar membrane. The existence of membrane-bound basal bodies is shown to be an artifact arising from adherence of cell wall and cytoplasmic membrane fragments to flagella in lysed preparations. Based on structures observed, a mechanism to explain bacterial flagellar movement is proposed. Flagella are considered to be anchored to the cell wall and activated by displacement of underlying cytoplasmic membrane to which they are also firmly attached. An explanation for the membrane displacement is given.  相似文献   

2.
Attachment and structural features of flagella of certain bacilli   总被引:19,自引:13,他引:6  
Abram, Dinah (Purdue University, Lafayette, Ind.), A. E. Vatter, and Henry Koffler. Attachment and structural features of flagella of certain bacilli. J. Bacteriol. 91:2045-2068. 1966.-The attachment of flagella to cells of various mesophilic and thermophilic strains of Bacillus was studied electron microscopically. Studies of ghost cells and membrane fragments indicate that flagella are connected to the cytoplasmic membrane. Flagella removed from cells mechanically, during autolysis, or by phage lysis, have attached to the base of their proximal hooks material that is heterogeneous in character. In part, this material consists of cytoplasmic membrane; its varied shape appears to be caused by the folding of the membrane around the proximal end of the flagellum at the site of attachment. It is uncertain whether this material represents a real structure or an artifact. Highresolution microscopy reveals differences in the fine structure of intact flagella of the various strains studied. The proximal hook and the flagellar filament are distinct in morphology and fine structure. A specialized structure is associated with the hook of flagella of B. brevis and B. circulans. The filament of flagella of B. stearothermophilus 2184 has two regions that show marked differences in the manner in which the subunits appear to be organized. No correlation was found between the site of origin of flagella and the location of reduced tellurite when the reduction of potassium tellurite was used to indicate the loci of enzymatic respiratory activities.  相似文献   

3.
Flagellar development in the plurilocular zoidangia of sporophytes of the brown alga Ectocarpus siliculosus was analyzed in detail using transmission electron microscopy and electron tomography. A series of cell divisions in the plurilocular zoidangia produced the spore-mother cells. In these cells, the centrioles differentiated into flagellar basal bodies with basal plates at their distal ends and attached to the plasma membrane. The plasma membrane formed a depression (flagellar pocket) into where the flagella elongated and in which variously sized vesicles and cytoplasmic fragments accumulated. The anterior and posterior flagella started elongating simultaneously, and the vesicles and cytoplasmic fragments in the flagellar pocket fused to the flagellar membranes. The two flagella (anterior and posterior) could be clearly distinguished from each other at the initial stage of their development by differences in length, diameter and the appendage flagellar rootlets. Flagella continued to elongate in the flagellar pocket and maintained their mutually parallel arrangement as the flagellar pocket gradually changed position. In mature zoids, the basal part of the posterior flagellum (paraflagellar body) characteristically became swollen and faced the eyespot region. Electron dense materials accumulated between the axoneme and the flagellar membrane, and crystallized materials could also be observed in the swollen region. Before liberation of the zoospores from the plurilocular zoidangia, mastigoneme attachment was restricted to the distal region of the anterior flagellum. Structures just below the flagellar membrane that connected to the mastigonemes were clearly visible by electron tomography.  相似文献   

4.
A procedure is described for the purification of the Escherichia coli outer membrane (lipopolysaccharide or L membrane) with flagella still attached. The resulting lipopolysaccharide membrane was in the form of vesicles that had a trilaminar structure in thin section and contained about 55% lipopolysaccharide and 45% protein. T2 or T4 phage preadsorbed to E. coli were found attached to the purified lipopolysaccharide membrane. Flagella were bound to the purified lipopolysaccharide membrane specifically at the basal body ring closest to the hook (the L ring). The cytoplasmic membrane in preparations from osmotically lysed E. coli spheroplasts or Bacillus subtilis protoplasts was specifically attached to flagella at the basal body ring farthest from the hook (the M ring). In the E. coli preparation, lipopolysaccharide membrane was also present and was attached to the L ring. From these data and a knowledge of the structure and dimensions of the E. coli flagellar basal body and cell envelope, a model for flagellar attachment is deduced.  相似文献   

5.
Purified and crude flagellar isolates from cells of Bacillus pumilus NRS 236 were treated with acid, alcohol, acid-alcohol, or heat, and were examined electron microscopically in negatively stained and shadow-cast preparations. Under certain conditions, each of these agents causes the flagella to break between the proximal hooks and the spiral filaments. In such preparations, filaments are seen in various stages of disintegration, whereas hooks of fairly constant length retain their integrity and morphological identity. When crude isolates of flagella are treated under these conditions, the hooks remain attached to membrane fragments or bear basal material. These findings substantiate previous structural observations that led to the view that the proximal hook is a distinct part of the bacterial flagellum and further confirm that the hook is tightly associated with basal material and the cytoplasmic membrane. It appears that the hook is a polarly oriented structure, and that the interactions between the hook and the basal material or the cytoplasmic membrane are different from those between the hook and the filamentous portion of the organelle. Moreover, both types of interaction apparently differ still from those by which the flagellin subunits are held together in the flagellar filament. Hooks were isolated by exploiting the differences in relative stability shown by the various morphological regions of the bacterial flagellum.  相似文献   

6.
The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the freeze-fractured plasma membrane and the flagellar membranes of the pathogenic protozoa, Tritrichomonas foetus. A homogeneous distribution of filipin-sterol complexes was seen throughout the plasma membrane, and the membrane of the three anterior and the one recurrent flagella. No or very few filipin-sterol complexes were observed in some specialized regions such as the base of the flagella (necklace), the portion of the recurrent flagellum, and that part of the cell body to which the flagellum was attached. The density of filipin-sterol complexes varied from one cell to the other. In some cells, about 205 complexes/μm2 were seen. A larger number of filipin-sterol complexes were observed on both faces of the membrane of cytoplasmic structures, probably corresponding to vacuoles. No complexes were seen in the nuclear membrane and in the membrane of the endoplasmic reticulum. Very few or no complexes were observed in the membrane of the hydrogenosomes. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.  相似文献   

7.
ABSTRACT. Freeze-fracture techniques reveal differences in fine structure between the anterior three flagella of Tritrichomonas foetus and its recurrent flagellum. The anterior flagella have rosettes of 9–12 intramembranous particles on both the P and E faces. The recurrent flagellum lacks rosettes but has ribbon-like arrays of particles along the length of the flagellum, which may be involved in the flagellum's attachment to the cell body. This flagellum is attached to the membrane of the cell body along a distinct groove that contains few discernible particles. Some large intramembranous particles are visible on the P face of the cell body membrane at the point where the flagellum emerges from the cell body. The randomly distributed particles on the P and E faces of the plasma membrane have a particle density of 919/μm2 and 468/μm2 respectively, and there are areas on both faces that are devoid of particles. Freeze-fracture techniques also reveal numerous fenestrations in the membrane of the Golgi complex and about 24 pores per μm2 in the nuclear. membrane.  相似文献   

8.
SYNOPSIS. The ultrastructure of attached Trypanosoma vivax epimastigote clusters in the proboscis of the tsetse fly Glossina fuscipes is described from electron micrographs of thin sections. Some flagellates are attached directly to the lining of the insect's labrum by their flagella, most of which are aligned along the long axis of the proboscis. Other trypanosomes are attached indirectly, their flagella adhering to those of flagellates which are directly attached. Junctional complexes similar to those described from metazoan epithelia are found on the flagellar membrane. A long zonular hemidesmosome attaches the flagellum to the proboscis wall and a series of closely set macular desmosomes link the flagellar membranes of adjacent flagellates. Unlike the trypomastigote stages of T. vivax, more than one row of macular desmosomes may be present along the flagellum-body junction of the trypanosome. It is suggested that all these Junctional complexes serve to buttress the flagellate's attachment to its insect host and so maintain anchorage of the parasite during the fly's blood meals. The ability of the flagellum of trypanosomatids to form Junctional complexes may be a factor contributing to their success as parasites, this adaptation enabling them to multiply while attached to host surfaces.  相似文献   

9.
The structure of cyst-like cells of Leptomonas oncopelti (Trypanosomatidae) found in the midgut of the bug Oncopeltus fasciatus (Lygaeidae) was examined with light and electron microscopy. The formation of "cysts" begins with an unequal division of active flagellates with promastigote configuration. Cytokinesis starts on the lateral side of the flagellate, and then the cleavage furrow moves toward the apical end of the cell. The anterior part of a smaller daughter cell, referred to as cell C1, remains associated with the flagellum of maternal promastigote. C1 divides twice to give rise first to two equivalent cells (C2), and then to four morphologically similar cells (C3). C2 join with each other, and afterwards C3 attach between themselves as well via short cytoplasmic outgrowths, which appear instead flagella. In the point of outgrowth attachment of only one C2 and then of only one C3 to maternal flagellum zonal desmosomes occur. C1--C3 of L. oncopelti are similar to so-called straphangers (cyst-like parasites attached to the flagellum of maternal promastigote) known in some species of the genera Leptomonas and Blastocrithidia. Basal bodies are present in C1 and C2 but not in C3. DNA fibrils in the kinetoplast lack their common circular configuration, they progressively condense to form a disordered mass. C3 chromatin becomes denser to acquire eventually a characteristic "labyrinthine structure" looking like a huge bundle of whorled filaments 3-5 nm width. Inside this bundle there are channels of 10-12 nm in diameter filled with karyoplasm. On becoming ovoid, C3 are separated from the maternal promastigote flagellum and differentiate into mature "cysts". Straphangers C1--C3 and mature "cysts" lack any visible outer extracellular protective envelope (cyst wall). Instead, these cells have a cortical complex made of a reinforced plasmatic membrane underlined by a layer of a dense granular cytoplasm free of subpellicular microtubules. The mature "cyst" endoplasm shows a high electron density, and because of this identification of the majority of cellular organelles is next to impossible. Nevertheless, in both C3 and mature "cysts" some unusual membranes are seen composed of two electron lucent layers, with a single electron dense layer in between.  相似文献   

10.
Summary The flagellate-to-ameba conversion process of the MyxomyceteStemonitis pallida was investigated with Nomarski optics and electron microscopy. The flagellate has two flagella, a long and a short one. When the water film containing the flagellates becomes very thin, they retract their flagella, usually the short one first and then the long one. The short flagellum is retracted by only one method, in which the sheath membrane of the flagellum fuses with the cell membrane, consequently causing the axoneme to be absorbed into the cytoplasm. Retraction of the long flagellum can be divided into four types. In all cases, fusion of the sheath membrane and the cell membrane takes place. The retracted axoneme of the long flagellum sometimes beats convulsively for about 10 minutes after retraction, and after 10–15 minutes it became indistinguishable as it was detached from the blepharoplast.Analysis of thin sections shows that the retracted axonemes disintegrate in the following squence: B-tubules, A-tubules, spokes, central microtubules. In almost all cells the degradation begins immediately after retraction and is completed within 90 minutes. Only on rare occasions, structures which seem to have been derived from retracted axonemes are observed in the ameba about 90 minutes after conversion. The basal bodies and cytoplasmic microtubules are a little more stable than the retracted axonemes. Some basal bodies of the short flagellum, whose C-tubules are affected, are present in the amebae more than 90 minutes after conversion. Cytoplasmic microtubules decrease in number and become shorter in the amebae after about 24 hours, when newly formed regions filled with flocculent material appear.  相似文献   

11.
Cochlosoma anatis Kotlán (Zoomastigophorea, Retortamonadida, Cochlosomidae), isolated from the large intestines of domestic Rouen ducks, and Cochlosoma soricis n. sp., isolated from the small intestines of shrews, were observed by light and scanning electron microscopy. In both organisms, a single flagellum inserted on the dorsal surface at the same level as the insertion of 4 other flagella on the ventral surface. The 4 ventro-lateral flagella emerged from the left side of the anterior attachment disk below the margin and just above the lateral groove which extended the length of the organism. A 6th flagellum emerged from the margin of the attachment disk. The proximal ends of the flagella formed a bundle with the distal ends becoming unraveled like a rope. During motility, the bundle portion extended straight out from the cell and the free ends of the flagella produced a whipping motion. In C. anatis , the dorsal surface was covered with knob-like lumps and small pits and the cells had an axostyle that emerged slightly to the right of the midline in the posterior 1/3 of the body. The axostylar tip was shorter and thicker than the flagella and in most cells it also had an irregular, knobby appearance. The irregular cell surface and axostyle were absent from C. soricis. The margin of the attachment disk curved toward the center and terminated in C. anatis as a straight edge while in C. soricis it continued as a spiral. Indentations in the mucosal brush border similar to those produced by Giardia , but distinctly belonging to Cochlosoma , were interpreted as points of attachment to the host.  相似文献   

12.
Basal Organelles of Bacterial Flagella   总被引:19,自引:16,他引:3  
Liberated by enzymatic lysis of the cells, the flagella of Rhodospirillum rubrum, R. molischianum, and R. fulvum all have a similar structure. The hook at the base of the flagellum is connected by a short, narrow collar to a paired disc in the basal organelle. This paired disc is in turn connected to a second paired disc. The disposition of flagella to which fragments of the cell membrane still adhere suggests that the narrow collar at the base of the hook traverses both the wall and the membrane, and that the upper pair of discs in the basal organelle lies just beneath the surface of the membrane.  相似文献   

13.
Cochlosoma anatis Kotlán (Zoomastigophorea, Retortamonadida, Cochlosomidae), isolated from the large intestines of domestic Rouen ducks, and Cochlosoma soricis n. sp., isolated from the small intestines of shrews, were observed by light and scanning electron microscopy. In both organisms, a single flagellum inserted on the dorsal surface at the same level as the insertion of 4 other flagella on the ventral surface. The 4 ventro-lateral flagella emerged from the left side of the anterior attachment disk below the margin and just above the lateral groove which extended the length of the organism. A 6th flagellum emerged from the margin of the attachment disk. The proximal ends of the flagella formed a bundle with the distal ends becoming unraveled like a rope. During motility, the bundle portion extended straight out from the cell and the free ends of the flagella produced a whipping motion. In C. anatis, the dorsal surface was covered with knob-like lumps and small pits and the cells had an axostyle that emerged slightly to the right of the midline in the posterior 1/3 of the body. The axostylar tip was shorter and thicker than the flagella and in most cells it also had an irregular, knobby appearance. The irregular cell surface and axostyle were absent from C. soricis. The margin of the attachment disk curved toward the center and terminated in C. anatis as a straight edge while in C. soricis it continued as a spiral. Indentations in the mucosal brush border similar to those produced by Giardia, but distinctly belonging to Cochlosoma, were interpreted as points of attachment to the host.  相似文献   

14.
Flagella can be removed from the biflagellate Chlamydomonas and the cells begin to regenerate flagella almost immediately by deceleratory kinetics. Under usual conditions of deflagellation, more than 98% of all flagella are removed. Under less drastic conditions, cells can be selected in which one flagellum is removed and the other left intact. When only one of the two flagella is amputated, the intact flagellum shortens by linear kinetics while the amputated one regenerates. The two flagella attain an equal intermediate length and then approach their initial length at the same rate. A concentration of cycloheximide which inhibits protein synthesis permits less than one-third of each flagellum to form when both flagella are amputated. When only one is amputated in cycloheximide, shortening proceeds normally and the degree of elongation in the amputated flagellum is greater than if both were amputated in the presence of cycloheximide. The shortening process is therefore independent of protein synthesis, and the protein from the shortening flagellum probably enters the pool of precursors available for flagellar formation. Partial regeneration of flagella occurs in concentrations of cycloheximide inhibitory to protein synthesis suggesting that some flagellar precursors are present. Cycloheximide and flagellar pulse-labeling studies indicate that precursor is used during the first part of elongation, is resynthesized at mid-elongation, and approaches its original level as the flagella reach their initial length. Colchicine completely blocks regeneration without affecting protein synthesis, and extended exposure of deflagellated cells to colchicine increases the amount of flagellar growth upon transfer to cycloheximide. When colchicine is applied to cells with only one flagellum removed, shortening continues normally but regeneration is blocked. Therefore, colchicine can be used to separate the processes of shortening and elongation. Radioautographic studies of the growth zone of Chlamydomonas flagella corroborate previous findings that assembly is occurring at the distal end (tip growth) of the organelle.  相似文献   

15.
Flagella of living sperm of the ferns, Lygodium japonicum (Thunb.) Sw. and Marsilea vestita Hook, and Grev., beat three dimensionally with a continuous traveling helical wave. The wave is propagated from base to tip of the flagellum. Flagella of Lygodium and Marsilea complete 65 and 30 beat cycles per sec, respectively. Each flagellum circumscribes an open conicoid oriented in a latero-posterior direction. Only dead sperm have anteriorly directed flagella as illustrated in plant morphology textbooks.  相似文献   

16.
This article presents the scanning and transmission electron microscopy of the spermatozoa and sperm packets of three inseminating species of the glandulocaudine tribe Xenurobryconini. All three species, Scopaeocharax rhinodus, Tyttocharax cochui, and T. tambopatensis produce unencapsulated sperm packets (= spermatozeugmata) of similar morphology. The external anterior surface of each spermatozeugma is comprised of elongate sperm heads arranged in parallel, and the posterior part is made up of tightly packed flagella. The interior of the anterior portion consists of alternating layers of sperm heads and flagella. The remarkable integrity of each packet appears to be maintained through an electron-dense secretion seen among all parts of the cells. Spermatozeugma formation takes place within the spermatocysts at the end of spermiogenesis and at spermiation fully formed packets are released. Morphology of the mature spermatozoa was similar in all three species. Each nucleus is elongate, flattened along most of its length, and tapers at either end. The two centrioles are nearly parallel to one another and are located just anterior to the nucleus. Elongate mitochondria are located along the nucleus. The single flagellum, which lacks axonemal fins, is initially contained within a short cytoplasmic collar. Accessory microtubules run parallel to the long axis of the nucleus just beneath the plasma membrane. During spermiogenesis, no nuclear rotation occurs and the cytoplasmic canal containing the flagellum elongates along with the nucleus. However, prior to spermiation all but the anterior portion of the collar degenerates. The sperm modifications observed in these species are discussed as adaptations to the unique reproductive habit of insemination.  相似文献   

17.
The morphological features of the cell wall, plasma membrane, protoplasmic constituents, and flagella of Acetobacter suboxydans (ATCC 621) were studied by thin sectioning and negative staining. Thin sections of the cell wall demonstrate an outer membrane and an inner, more homogeneous layer. These observations are consistent with those of isolated, gram-negative cell-wall ghosts and the chemical analyses of gram-negative cell walls. Certain functional attributes of the cell-wall inner layer and the structural comparisons of gram-negative and gram-positive cell walls are considered. The plasma membrane is similar in appearance to the membrane of the cell wall and is occasionally found to be folded into the cytoplasm. Certain features of the protoplasm are described and discussed, including the diffuse states of the chromatinic material that appear to be correlated with the length of the cell and a polar differentiation in the area of expected flagellar attachment. Although the flagella appear hollow in thin sections, negative staining of isolated flagella does not substantiate this finding. Severe physical treatment occasionally produces a localized penetration into the central region of the flagellum, the diameter of which is much smaller then that expected from sections. A possible explanation of this apparent discrepancy is discussed.  相似文献   

18.
To study the mechanisms responsible for the regulation of flagellar length, we examined the effects of colchicine and Cytochalasin D (CD) on the growth and maintenance of Chlamydomonas flagella on motile wild type cells as well as on pf 18 cells, whose flagella lack the central microtubules and are immobile. CD had no effect on the regeneration of flagella after deflagellation but it induced fully assembled flagella to shorten at an average rate of 0.03 microns-min. Cells remained fully motile in CD and even stubby flagella continued to move, indicating that flagellar shortening did not selectively disrupt machinery necessary for motility. To observe the effects of the drug on individual cells, pf 18 cells were treated with CD and flagella on cells were monitored by direct observation over a 5-hour period. Flagella on control pf 18 cells maintained their initial lengths throughout the experiment but flagella on CD-treated cells exhibited periods of elongation, shortening, and regrowth suggestive of the dynamic behavior of cytoplasmic microtubules observed in vitro and in vitro. Cells behaved individually, with no two cells exhibiting the same flagellar behavior at any given time although both flagella on any single cell behaved identically. The rate of drug-induced flagellar shortening and elongation in pf 18 cells varied from 0.08 to 0.17 microns-min-1, with each event occurring over 10-60-min periods. Addition of colchicine to wild type and pf 18 cells induced flagella to shorten at an average rate of 0.06 microns-min-1 until the flagella reached an average of 73% of their initial length, after which they exhibited no further shortening or elongation. Cells treated with colchicine and CD exhibited nearly complete flagellar resorption, with little variation in flagellar length among cells. The effects of these drugs were reversible and flagella grew to normal stable lengths after drug removal. Taken together, these results show that the distal half to one-third of the Chlamydomonas flagellum is relatively unstable in the presence of colchicine but that the proximal half to two-thirds of the flagellum is stable to this drug. In contrast to colchicine, CD can induce nearly complete flagellar microtubule disassembly as well as flagellar assembly. Flagellar microtubules must, therefore, be inherently unstable, and flagellar length is stabilized by factors that are sensitive, either directly or indirectly, to the effects of CD.  相似文献   

19.
R. A. Bloodgood 《Protoplasma》1981,106(3-4):183-192
Summary Flagella are generally recognized as organelles of motility responsible for the ability ofChlamydomonas to swim through its environment. However, the same flagella are also responsible for an alternative form of whole cell locomotion, termed gliding. Use of paralyzed flagella mutants demonstrates that gliding is independent of axonemal bend propagation. Gliding motility results from an interaction of the flagellar surface with a solid substrate. Gliding is characterized by bidirectional movements at 1.6±0.3 m/second and occurs when the cell is in a characteristic gliding configuration, where the two flagella are oriented at 180° to one another. A variety of observations suggest that the leading flagellum is responsible for the force transduction resulting in cell locomotion, although both flagella have the capacity to function as the active flagellum. The characteristics of gliding motility have been compared with theChlamydomonas flagellar surface motility phenomenon defined as surface translocation of polystyrene microspheres.  相似文献   

20.
Flagella purified from Salmonella enterica serovar Typhimurium contain FliG, FliM, and FliN, cytoplasmic proteins that are important in torque generation and switching, and FliF, a transmembrane structural protein. The motor portion of the flagellum (the basal body complex) has a cytoplasmic C ring and a transmembrane M ring. Incubation of purified basal bodies at pH 4.5 removed FliM and FliN but not FliG or FliF. These basal bodies lacked C rings but had intact M rings, suggesting that FliM and FliN are part of the C ring but not a detectable part of the M ring. Incubation of basal bodies at pH 2.5 removed FliG, FliM, and FliN but not FliF. These basal bodies lacked the C ring, and the cytoplasmic face of the M ring was altered, suggesting that FliG makes up at least part of the cytoplasmic face of the M ring. Further insights into FliG were obtained from cells expressing a fusion protein of FliF and FliG. Flagella from these mutants still rotated but cells were not chemotactic. One mutant is a full-length fusion of FliF and FliG; the second mutant has a deletion lacking the last 56 residues of FliF and the first 94 residues of FliG. In the former, C rings appeared complete, but a portion of the M ring was shifted to higher radius. The C-ring-M-ring interaction appeared to be altered. In basal bodies with the fusion-deletion protein, the C ring was smaller in diameter, and one of its domains occupied space vacated by missing portions of FliF and FliG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号