首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We describe a peptide vaccine model containing a built-in adjuvant. This model used a multiple antigen peptide system (MAPS) to amplify peptide antigens and a lipoamino acid, tripalmitoyl glyceryl cysteine (P3C), as a built-in adjuvant. An 18-residue peptide antigen (B2) derived from the third variable domain (amino acid 312-329) of the glycoprotein gp120 of type I human immunodeficiency virus (HIV-1) was used in this model. This peptide antigen is a suitable target since it consists of neutralizing, T-helper, and T-cytotoxic epitopes. The peptide antigen in a tetravalent MAPS format (B2M-P3C) with a lipophilic attachment was synthesized by two routes for comparison: a direct stepwise approach and an indirect modular approach. In the stepwise approach, each residue was sequentially added to the peptide resin to give B2M-P3C and the P3C was incorporated to the side chain of a carboxyl terminal lysine as Fmoc-Lys(P3C). In the modular approach, a module containing a chloroacetylated core matrix of MAPS (M-P3C) with a carboxyl tetrapeptide bearing Lys(P3C) and a second module containing the peptide antigen B2 with a cysteine at its terminus were synthesized and purified separately, and then coupled to each other to form B2M-P3C. In the modular approach, the molecular ion of B2M-P3C was unambiguously identified by ion-spray mass spectrometry. B2M-P3C, administered in liposomes without any adjuvant such as Freund's complete adjuvant, was used to immunize mice and found to induce gp120-specific antibodies in vitro, and prime cytotoxic T lymphocytes in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Chemotherapy is the basis of treatment of paracoccidioidomycosis in its various forms. Depending on the Paracoccidioides brasiliensis virulence, the status of host immunity, the degree of tissue involvement and fungal dissemination, treatment can be extended for long periods with an alarming frequency of relapses. Association of chemotherapy with a vaccine to boost the cellular immune response seemed a relevant project not only to reduce the time of treatment but also to prevent relapses and improve the prognosis of anergic cases. The candidate immunogen is the gp43 major diagnostic antigen of P.␣brasiliensis and more specifically its derived peptide P10, carrying the CD4+ T-cell epitope. Both gp43 and P10 protected Balb/c mice against intratracheal infections with virulent P. brasiliensis strain. P10 as single peptide or in a multiple-antigen-peptide (MAP) tetravalent construction was protective without adjuvant either by preimmunization and intratracheal challenge or as a therapeutic agent in mice with installed infection. P10 showed additive protective effects in drug-treated mice stimulating a Th-1 type immune response with high IFN-γ and IL-12. P10 and few other peptides in the gp43 were selected by Tepitope algorithm and actually shown to promiscuously bind several prominent HLA-DR molecules suggesting that a peptide vaccine could be devised for a genetically heterogenous population. P10 was protective in animals turned anergic, was effective in a DNA minigene vaccine, and increased the protection by monoclonal antibodies in Balb/c mice. DNA vaccines and peptide vaccines are promising therapeutic tools to be explored in the control of systemic mycoses.  相似文献   

3.
Expressing heterologous antigens by plasmids may cause antibiotic resistance. Additionally, antigen expression via plasmids is unstable due to the loss of the plasmid. Here, we developed a balanced-lethal system. The Listeria monocytogenes (LM) balanced-lethal system has been previously used as an antigen carrier to induce cellular immune response. However, thus far, there has been no reports on Listeria ivanovii (LI) balanced-lethal systems. The dal and dat genes from the LI-attenuated LIΔatcAplcB (LIΔ) were deleted consecutively, resulting in a nutrient-deficient LIΔdd strain. Subsequently, an antibiotic resistance-free plasmid carrying the LM dal gene was transformed into the nutrient-deficient strain to generate the LI balanced-lethal system LIΔdd:dal. The resultant bacterial strain retains the ability to proliferate in phagocytic cells, as well as the ability to adhere and invade hepatocytes. Its genetic composition was stable, and compared to the parent strain, the balanced-lethal system was substantially attenuated. In addition, LIΔdd:dal induced specific CD4+/CD8+ T-cell responses and protected mice against LIΔ challenge. Similarly, we constructed an LM balanced-lethal system LMΔdd:dal. Sequential immunization with different recombinant Listeria strains will significantly enhance the immunotherapeutic effect. Thus, LIΔdd:dal combined with LMΔdd:dal, or with other balanced-lethal systems will be more promising alternative for vaccine development.  相似文献   

4.
5.
《Cytokine》2011,53(3):238-244
Bryostatin-1 (Bryo-1), a PKC modulator, was previously shown to activate monocytes and lymphocytes to produce cytokines. In this report, we investigated the adjuvanticity of Bryo-1 both in vitro and in vivo. First, Bryo-1 was found to induce the release of CCL2 and CCL3 from mouse bone marrow-derived dendritic cells (BMDC) in a dose-dependent manner. As little as 0.1 nM Bryo-I induced release of chemokines from BMDC and the maximal induction could be achieved at 5–10 nM. Both PKC and ERK inhibitors attenuated the release of CCL2 and CCL3. Consistently, Western blot indicated that Bryo-I activated ERK in a dose- and time-dependent manner. Experiments with the NF-κB inhibitor, MG-132, demonstrated that NF-κB was involved in the induction of CCL2 but not CCL3. Because chemokines have been demonstrated to have profound effects on immune reactions by regulating the trafficking of DC and other lymphocytes into lymphoid organs, Bryo-I was tested as an adjuvant in an E7 peptide (MHC class I-restricted peptide epitope derived from human papillomavirus (HPV) 16 E7 protein)-based cancer vaccine. Mice immunized by s.c. injection with Bryo-I/E7 had enlarged draining lymph nodes and showed an antigen specific T-cell response demonstrated by the release of IFN-γ from isolated splenocytes and in vivo CTL activity. Finally, immunization with Bryo-I/E7 totally prevented the E7-expressing TC-1 tumor growth in mice. In conclusion, for the first time, we demonstrated that Bryo-I induced chemokine release from dendritic cell and was an effective adjuvant for peptide cancer vaccine.  相似文献   

6.
Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.  相似文献   

7.
8.
To establish correlation between structural properties (charge, composition, and conformation) and membrane penetration capability, the interaction of epitope peptide-carrier constructs with phospholipid model membranes was studied. For this we have conjugated a linear epitope peptide, (110)FWRGDLVFDFQV(121) (110-121), from VP3 capside protein of the Hepatitis A virus with polylysine-based branched polypeptides with different chemical characteristics. The epitope peptide elongated by one Cys residue at the N-terminal [C(110-121)] was attached to poly[Lys-(DL-Ala(m)()-X(i)())] (i < 1, m approximately 3), where x = ?(AK), Ser (SAK), or Glu (EAK) by the amide-thiol heterobifunctional reagent, 3-(2-pyridyldithio)propionic acid N-hydroxy-succinimide ester. The interaction of these polymer-[C(110-121)] conjugates with phospholipid monolayers and bilayers was studied using DPPC and DPPC/PG (95/5 mol/mol) mixture. Changes in the fluidity of liposomes induced by these conjugates were detected by using two fluorescent probes 1,6-diphenyl-1,3, 5-hexatriene (DPH) and sodium anilino naphthalene sulfonate (ANS). The binding of conjugates to the model membranes was compared and the contribution of the polymer component to these interactions were evaluated. We found that conjugates with polyanionic/EAK-[C(110-121)] or polycationic/SAK-[C(110-121)], AK-[C(110-121)]/character were capable to form monomolecular layers at the air/water interface with structure dependent stability in the following order: EAK-[C(110-121)] > SAK-[C(110-121)] > AK-[C(110-121)]. Data obtained from penetration studies into phospholipid monolayers indicated that conjugate insertion is more pronounced for EAK-[C(110-121)] than for AK-[C(110-121)] or SAK-[C(110-121)]. Changes in the fluorescence intensity and in polarization of fluorescent probes either at the polar surface (ANS) or within the hydrophobic core (DPH) of the DPPC/PG liposomes suggested that all three conjugates interact with the outer surface of the bilayer. Marked penetration was documented by a significant increase of the transition temperature only with the polyanionic compound/EAK-[C(110-121)]. Taken together, we found that the binding/penetration of conjugates to phospholipid model membranes is dependent on the charge properties of the constructs. Considering that the orientation and number of VP3 epitope peptides attached to branched polypeptides were almost identical, we can conclude that the structural characteristics (amino acid composition, charge, and surface activity) of the carrier have a pronounced effect on the conjugate-phospholipid membrane interaction. These observations suggest that the selection of polymer carrier for epitope attachment might significantly influence the membrane activity of the conjugate and provide guidelines for adequate presentation of immunogenic peptides to the cells.  相似文献   

9.
We describe the design and synthesis of a novel well characterized multi-peptide conjugate (MPC) system containing antigens from human malaria parasite and the Tat protein of HIV type-1 (HIV-1-Tat). Construction of the MPC utilizes Fmoc solid-phase peptide synthesis coupled with solution chemistry. In the first phase, a core template that serves as primary anchor for the synthesis and attachment of multiple antigens is synthesized. Serine(trityl) and multiple lysine branches with epsilon groups blocked during chain assembly are incorporated forming a tetrameric core. Cysteine whose side chain thiol serves to couple haloacetyl or S-protected haloacetyl peptides is added to complete assembly of the core template. Modification to the coupling solvent, addition of key amino acid derivatives (N-[1-hydroxy-4-methoxybenzyl]) in the peptide sequence allows the synthesis of base peptides on the core template with molecular mass greater than 7500 kDa. Base peptides are then reacted with high performance liquid chromatography purified haloacetyl peptides to generate multiple peptide conjugates with molecular masses of 10 to 13 kDa. MPC constructs thus formed are further characterized by matrix assisted laser desorption-time of flight mass spectroscopy (MALDI-MS), amino acid analysis, size exclusion chromatography, and SDS-polyacrylamide gel electrophoresis (PAGE). To our knowledge, this is the first report describing a chemically well defined multiple conjugate system with potential for development of synthetic subunit vaccines.  相似文献   

10.
The absence of surface costimulatory molecules explains in part the lack of an effective anti-tumor immune response in tumor-bearing animals, even though unique tumor antigens may be presented by class I MHC. We determined that the immunogenicity of a murine neuroblastoma, Neuro-2a, which lacks surface costimulatory molecules, could be increased by electrically induced fusion with dendritic cells. Electrofusion induced a higher level of cell fusion than polyethylene glycol, and tumor/dendritic cell heterokaryons expressed high levels of costimulatory molecules. While Neuro-2a was unable to induce the proliferation of syngeneic or allogeneic T cells in vitro, fused cells were able to induce T cell responses both in vitro and in vivo. When fused dendritic tumor cells were used as a cancer vaccine, immunized mice were significantly protected from challenge with Neuro-2a. We propose that electrofusion with patient-derived tumor and dendritic cells may provide a rapid means to produce patient-specific tumor vaccines.  相似文献   

11.
A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant.  相似文献   

12.
Summary A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant.  相似文献   

13.
Technologies that delivery antigen-encoded plasmid DNA (pDNA) to antigen presenting cell and their immune-activation are required for the success of DNA vaccines. Here we report on an artificial nanoparticle that can achieve these; a multifunctional envelope-type nanodevice modified with KALA, a peptide that forms α-helical structure at physiological pH (KALA-MEND). KALA modification and the removal of the CpG-motifs from the pDNA synergistically boosted transfection efficacy. In parallel, transfection with the KALA-MEND enhances the production of multiple cytokines and chemokines and co-stimulatory molecules via the Toll-like receptor 9-independent manner. Endosome-fusogenic lipid envelops and a long length of pDNA are essential for this immune stimulation. Furthermore, cytoplasmic dsDNA sensors that are related to the STING/TBK1 pathway and inflammasome are involved in IFN-β and IL-1β production, respectively. Consequently, the robust induction of antigen-specific cytotoxic T-lymphoma activity and the resulting prophylactic and therapeutic anti-tumor effect was observed in mice that had been immunized with bone marrow-derived dendritic cells ex vivo transfected with antigen-encoding pDNA. Collectively, the KALA-MEND possesses dual functions; gene transfection system and immune-stimulative adjuvant, those are both necessary for the successful DNA vaccine.  相似文献   

14.
Immunoadjuvants are used to potentiate the activity of modern subunit vaccines that are based on molecular antigens. An emerging approach involves the combination of multiple adjuvants in a single formulation to achieve optimal vaccine efficacy. Herein, to investigate such potential synergies, we synthesized novel adjuvant conjugates based on the saponin natural product QS-21 and the aldehyde tucaresol via chemoselective acylation of an amine at the terminus of the acyl chain domain in QS saponin variants. In a preclinical mouse vaccination model, these QS saponin–tucaresol conjugates induced antibody responses similar to or slightly higher than those generated with related QS saponin variants lacking the tucaresol motif. The conjugates retained potent adjuvant activity, low toxicity, and improved activity–toxicity profiles relative to QS-21 itself and induced IgG subclass profiles similar to those of QS-21, indicative of both Th1 cellular and Th2 humoral immune responses. This study opens the door to installation of other substituents at the terminus of the acyl chain domain to develop additional QS saponin conjugates with desirable immunologic properties.  相似文献   

15.
16.
The adjuvant action of poly A:U has been analyzed in a system measuring humoral immune responses to hapten-carrier conjugates in mice. Administration of poly A:U at the time of primary immunization with 2,4-dinitrophenyl (DNP)-keyhole limpet hemocyanin (KLH) shortens the induction period for, and heightens the magnitude of peak anti-DNP antibody and specific memory cell production. In order to define the cellular locus of poly A:U action, the effect of this adjuvant on adoptive secondary anti-DNP antibody responses was studied. Spleen cells from DNP-KLH-primed donors, which normally fail to develop adoptive secondary anti-DNP responses to a heterologous conjugate such as DNP-bovine gamma globulin (BGG), can be stimulated to do so when an appropriate dose of poly A:U is administered with DNP-BGG. The capacity for poly A:U to exert this effect requires the presence of T lymphocytes, since depletion of such cells by treatment of the donor cell inoculum with anti-θ serum and complement in vitro prior to adoptive transfer abrogates the response to DNP-BGG plus poly A:U. Moreover, evidence is presented that demonstrates that poly A:U exerts its adjuvant action on the small number of unimmunized BGG-specific T lymphocytes in the donor cell inoculum. This conclusion derives from the failure of poly A:U to augment adoptive secondary anti-DNP responses to the DNP derivative of a nonimmunogenic copolymer of d-glutamic acid and d-lysine (d-GL) for which there are few or no specific, functional T cells.  相似文献   

17.
Many new vaccines under development consist of rationally designed recombinant proteins that are relatively poor immunogens unless combined with potent adjuvants. There is only one adjuvant in common use in the U.S., aluminum phosphate or hydroxide (e.g. alum). This adjuvant, however, has significant limitations, particularly regarding the generation of strong cell-mediated (T-cell) immune responses. A novel adjuvant, JVRS-100, composed of cationic liposome–DNA complexes (CLDC) has been evaluated for immune enhancing activity. The JVRS-100 adjuvant has been shown to elicit robust immune responses compared to CpG oligonucleotides, alum, and MPL adjuvants, and efficiently enhances both humoral and cellular immune responses. Safety has been evaluated in preclinical studies, and the adjuvant is now in early-stage clinical development. One application of this novel adjuvant is to augment the immune responses to recombinant subunit antigens, which are often poorly immunogenic. The JVRS-100 adjuvant, when combined with a recombinant influenza hemagglutinin (H1), elicited increased specific antibody and T-cell responses in mice. Single-dose vaccination and prime/boost vaccinations with JVRS-100-H1 were both shown to be protective (i.e., survival, reduced weight loss) following H1N1 (PR/8/34) virus challenge. Enhanced immunological responses could be critically important for improved efficacy and dose-sparing of a recombinant influenza vaccine.  相似文献   

18.
This is the study on the effect of opiorphin, sialorphin and their analogs on antitumor activity. We demonstrated that conjugation of opiorphin and sialorphin with a proapoptotic, antimicrobial peptide klak (klaklakklaklak) led to compounds (opio‐klak and sialo‐klak) that were cytotoxic against cancer cells (LN18, PC3, A549, HCT116 and B10‐F16) in the MTT test. The conjugated analogs were designed to increase the effectiveness of the peptide. The opio‐klak derivative was the most effective in the in vitro assays and led to a decrease in viability of cancer cells over time as compared with that of untreated controls. In contrast, treatment with either the untargeted klak peptide or opiorphin as a negative control led to a negligible loss in viability. Antitumor effect of the opio‐klak was also observed in vivo in murine melanoma tumor‐bearing mice. Cessation of peptide administration resulted in tumor regrowth. Our results are seemingly valuable for the development of opiorphin analogs with potential clinical applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Innate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a synthetic hexaacylated lipid A derivative, denoted as glucopyranosyl lipid adjuvant (GLA). We assessed the effects of GLA on murine and human dendritic cells (DC) by combining microarray, mRNA and protein multiplex assays and flow cytometry analyses. We demonstrate that GLA has multifunctional immunomodulatory activity similar to naturally-derived monophosphory lipid A (MPL) on murine DC, including the production of inflammatory cytokines, chemokines, DC maturation and antigen-presenting functions. In contrast, hexaacylated GLA was overall more potent on a molar basis than heterogeneous MPL when tested on human DC and peripheral blood mononuclear cells (PBMC). When administered in vivo, GLA enhanced the immunogenicity of co-administered recombinant antigens, producing strong cell-mediated immunity and a qualitative T(H)1 response. We conclude that the GLA adjuvant stimulates and directs innate and adaptive immune responses by inducing DC maturation and the concomitant release of pro-inflammatory cytokines and chemokines associated with immune cell trafficking, activities which have important implications for the development of future vaccine adjuvants.  相似文献   

20.
A method was developed for the synthesis of oligonucleotide-cationic peptide conjugates in solution phase by disulfide bond formation. Precipitation was avoided by the easily removable triethylammonium trifluoroacetate (TEATFAc) salt which served at the same time as a buffer of the reaction mixture. The fast and high yielding disulfide bond formation was due to the Npys thio protecting and activating group of Cys. A solution of the free 5-thiol modified oligonucleotide obtained from Poly-Pak purification was used for conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号