首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.  相似文献   

2.
The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision—the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized.  相似文献   

3.
Small rhythmic circuits, such as those found in invertebrates, have provided fundamental insights into how circuit dynamics depend on individual neuronal and synaptic properties. Degenerate circuits are those with different network parameters and similar behavior. New work on degenerate circuits and their modulation illustrates some of the rules that help maintain stable and robust circuit function despite environmental perturbations. Advances in neuropeptide isolation and identification provide enhanced understanding of the neuromodulation of circuits for behavior. The advent of molecular studies of mRNA expression provides new insight into animal-to-animal variability and the homeostatic regulation of excitability in neurons and networks.  相似文献   

4.
The recently introduced term 'optogenetics' describes a variety of techniques for expressing genes in nerve cells that render them responsive to light. This approach makes use of light-sensitive channel proteins that can be used to manipulate neuronal function. Using genetic strategies, these channel proteins can be expressed in neurons defined by a common genetic identity, which can then be selectively activated or silenced through illumination. In?this minireview, we shall describe the basic principles of such manipulative optogenetic approaches in neuroscience and summarize how these tools are being exploited to investigate neuronal circuits and behavior.  相似文献   

5.
Life in the soil is an intellectual and practical challenge that the nematode Caenorhabditis elegans masters by utilizing 302 neurons. The nervous system assembled by these 302 neurons is capable of executing a variety of behaviors, some of respectable complexity. The simplicity of the nervous system, its thoroughly characterized structure, several sets of well-defined behaviors, and its genetic amenability combined with its isogenic background make C. elegans an attractive model organism to study the genetics of behavior. This review describes several behavioral plasticity paradigms in C. elegans and their underlying neuronal circuits and then goes on to review the forward genetic analysis that has been undertaken to identify genes involved in the execution of these behaviors. Lastly, the review outlines how reverse genetics and genomic approaches can guide the analysis of the role of genes in behavior and why and how they will complement the forward genetic analysis of behavior.  相似文献   

6.
Our understanding of the neuronal circuits and mechanisms of defensive systems has been primarily dominated by studies focusing on the contribution of individual cells in the processing of threat-predictive cues, defensive responses, the extinction of such responses and the contextual modulation of threat-related behavior. These studies have been key in establishing threat-related circuits and mechanisms. Yet, they fall short in answering long-standing questions related to the integrative processing of distinct threatening cues, behavioral states induced by threat-related events, or the bridging from sensory processing of threat-related cues to specific defensive responses. Recent conceptual and technical developments has allowed the monitoring of large populations of neurons, which in addition to advanced analytic tools, have improved our understanding of how collective neuronal activity supports threat-related behaviors. In this review, we discuss the current knowledge of neuronal population codes within threat-related networks, in the context of aversive motivated behavior and the study of defensive systems.  相似文献   

7.
One approach to understanding behavior is to define the cellular components of neuronal circuits that control behavior. In the nematode Caenorhabditis elegans, neuronal circuits have been delineated based on patterns of synaptic connectivity derived from ultrastructural analysis. Individual cellular components of these anatomically defined circuits have previously been characterized on the sensory and motor neuron levels. In contrast, interneuron function has only been addressed to a limited extent. We describe here several classes of interneurons (AIY, AIZ, and RIB) that modulate locomotory behavior in C. elegans. Using mutant analysis as well as microsurgical mapping techniques, we found that the AIY neuron class serves to tonically modulate reversal frequency of animals in various sensory environments via the repression of the activity of a bistable switch composed of defined command interneurons. Furthermore, we show that the presentation of defined sensory modalities induces specific alterations in reversal behavior and that the AIY interneuron class mediates this alteration in locomotory behavior. We also found that the AIZ and RIB interneuron classes process odorsensory information in parallel to the AIY interneuron class. AIY, AIZ, and RIB are the first interneurons directly implicated in chemosensory signaling. Our neuronal mapping studies provide the framework for further genetic and functional dissections of neuronal circuits in C. elegans.  相似文献   

8.
9.
Central pattern generator (CPG) circuits control cyclic motor output underlying rhythmic behaviors. Although there have been extensive behavioral and cellular studies of food-induced feeding arousal as well as satiation in Aplysia, very little is known about the neuronal circuits controlling rhythmic consummatory feeding behavior. However, recent studies have identified premotor neurons that initiate and maintain buccal motor programs underlying ingestion and egestion in Aplysia. Other newly identified neurons receive synaptic input from feeding CPGs and in turn synapse with and control the output of buccal motor neurons. Some of these neurons and their effects within the buccal system are modulated by endogenous neuropeptides. With this information we can begin to understand how neuronal networks control buccal motor output and how their activity is modulated to produce flexibility in observed feeding behavior.  相似文献   

10.
In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.  相似文献   

11.
Animals and humans learn to approach and acquire pleasant stimuli and to avoid or defend against aversive ones. However, both pleasant and aversive stimuli can elicit arousal and attention, and their salience or intensity increases when they occur by surprise. Thus, adaptive behavior may require that neural circuits compute both stimulus valence--or value--and intensity. To explore how these computations may be implemented, we examined neural responses in the primate amygdala to unexpected reinforcement during learning. Many amygdala neurons responded differently to reinforcement depending upon whether or not it was expected. In some neurons, this modulation occurred only for rewards or aversive stimuli, but not both. In other neurons, expectation similarly modulated responses to both rewards and punishments. These different neuronal populations may subserve two sorts of processes mediated by the amygdala: those activated by surprising reinforcements of both valences-such as enhanced arousal and attention-and those that are valence-specific, such as fear or reward-seeking behavior.  相似文献   

12.
Developmental mechanisms can shed light on how evolutionary diversity has arisen. Invertebrate nervous systems offer a wealth of diverse structures and functions from which to relate development to evolution. Individual homologous neurons have been shown to have distinct roles in species with different behaviors. In addition, specific neurons have been lost or gained in some phylogenetic lineages. The ability to address the neural basis of behavior at the cellular level in invertebrates has facilitated discoveries showing that species-specific behavior can arise from differences in synaptic strength, in neuronal structure and in neuromodulation. The mechanisms involved in the development of neural circuits lead to these differences across species.  相似文献   

13.
How cortical neurons process information crucially depends on how their local circuits are organized. Spontaneous synchronous neuronal activity propagating through neocortical slices displays highly diverse, yet repeatable, activity patterns called “neuronal avalanches”. They obey power-law distributions of the event sizes and lifetimes, presumably reflecting the structure of local circuits developed in slice cultures. However, the explicit network structure underlying the power-law statistics remains unclear. Here, we present a neuronal network model of pyramidal and inhibitory neurons that enables stable propagation of avalanche-like spiking activity. We demonstrate a neuronal wiring rule that governs the formation of mutually overlapping cell assemblies during the development of this network. The resultant network comprises a mixture of feedforward chains and recurrent circuits, in which neuronal avalanches are stable if the former structure is predominant. Interestingly, the recurrent synaptic connections formed by this wiring rule limit the number of cell assemblies embeddable in a neuron pool of given size. We investigate how the resultant power laws depend on the details of the cell-assembly formation as well as on the inhibitory feedback. Our model suggests that local cortical circuits may have a more complex topological design than has previously been thought. Competing financial interests: The authors declare that they have no competing financial interests. Action Editor: Peter Latham  相似文献   

14.
The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.  相似文献   

15.
The vertebrate brain is innately equipped with neural circuits that make quick behavioral decisions possible. Elucidating these neural circuits, determining how their master plans are encoded in the genome, and revealing how they can be modified by postnatal experiences will facilitate our understanding of how nature and nurture interact to establish an animal's behavior. In this review, we explain how transgenic zebrafish can cast insights into the developmental mechanisms and functional roles of the neural circuits that directly and indirectly control visuomotor behavior, by taking as an example a transgenic line Tg( brn3a-hsp70:GFP ) enabling visualization of the tectobulbar and habenulo-interpeduncular tracts. These insights emphasize the benefits of applying advanced transgenic technology in zebrafish to future research into this area.  相似文献   

16.
The microcircuitry of the neocortex is bewildering in its anatomical detail, but seen through the filters of physiology, some simple circuits have been suggested. Intensive investigations of the cortical representation of orientation, however, show how difficult it is to achieve any consensus on what the circuits are, how they develop, and how they work. New developments in modeling allied with powerful experimental tools are changing this. Experimental work combining optical imaging with anatomy and physiology has revealed a rich local cortical circuitry. Whereas older models of cortical circuits have concentrated on simple 'feedforward' circuits, newer theoretical work has explored more the role of the recurrent cortical circuits, which are more realistic representations of the actual circuits and are computationally richer.  相似文献   

17.
Sensory experience regulates the structural and functional wiring of neuronal circuits, during development and throughout adulthood. Here, we review current knowledge of how experience affects structural plasticity of pyramidal neurons in the sensory cortices. We discuss the pros and cons of existing labeling approaches, as well as what structural parameters are most plastic. We further discuss how recent advances in sparse labeling of specific neuronal subtypes, as well as development of techniques that allow fast, high resolution imaging in large fields, would enable future studies to address currently unanswered questions in the field of structural plasticity.  相似文献   

18.
The development of the nervous system involves the generation of a stunningly diverse array of neuronal subtypes that enable complex information processing and behavioral outputs. Deciphering how the nervous system acquires and interprets information and orchestrates behaviors will be greatly enhanced by the identification of distinct neuronal circuits and by an understanding of how these circuits are formed, changed, and/or maintained over time. Addressing these challenging questions depends in part on the ability to accurately identify and characterize the unique neuronal subtypes that comprise individual circuits. Distinguishing characteristics of neuronal subgroups include but are not limited to neurotransmitter phenotype, dendritic morphology, the identity of synaptic partners, and the expression of constellations of subgroup-specific proteins, including ion channel subtypes.  相似文献   

19.
How simple neuronal circuits control behavior is not well understood at the molecular or genetic level. In Caenorhabditis elegans, foraging behavior consists of long, forward movements interrupted by brief reversals. To determine how this pattern is generated and regulated, we have developed novel perturbation techniques that allow us to depolarize selected neurons in vivo using the dominant glutamate receptor mutation identified in the Lurcher mouse. Transgenic worms that expressed a mutated C. elegans glutamate receptor in interneurons that control locomotion displayed a remarkable and unexpected change in their behavior-they rapidly alternated between forward and backward coordinated movement. Our findings suggest that the gating of movement reversals is controlled in a partially distributed fashion by a small subset of interneurons and that this gating is modified by sensory input.  相似文献   

20.
We have used identified neurons from the abdominal ganglion of the mollusc Aplysia to construct and analyze two circuits in vitro. Each of these circuits was capable of producing two patterns of persistent activity; that is, they had bistable output states. The output could be switched between the stable states by a brief, external input. One circuit consisted of cocultured L10 and left upper quadrant (LUQ) neurons that formed reciprocal, inhibitory connections. In one stable state L10 was active and the LUQ was quiescent, whereas in the other stable state L10 was quiescent and the LUQ was active. A second circuit consisted of co-cultured L7 and L12 neurons that formed reciprocal, excitatory connections. In this circuit, both cells were quiescent in one stable state and both cells fired continuously in the other state. Bistable output in both circuits resulted from the nonlinear firing characteristics of each neuron and the feedback between the two neurons. We explored how the stability of the neuronal output could be controlled by the background currents injected into each neuron. We observed a relatively well-defined range of currents for which bistability occurred, consistent with the values expected from the measured strengths of the connections and a simple model. Outside of the range, the output was stable in only a single state. These results suggest how stable patterns of output are produced by some in vivo circuits and how command neurons from higher neural centers may control the activity of these circuits. The criteria that guided us in forming our circuits in culture were derived from theoretical studies on the properties of certain neuronal network models (e.g., Hopfield, J. J. 1984. Proc. Natl. Acad. Sci. USA. 81:3088-3092). Our results show that circuits consisting of only two co-cultured neurons can exhibit bistable output states of the form hypothesized to occur in populations of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号