首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Crosslinking of mRNA analog, dodecaribonucleotide pUUAGUAUUUAUU derivative carrying a perfluoroarylazido group at the guanine N7, was studied in model complexes with 80S ribosomes involving tRNA and in binary complex (i.e., in the absence of tRNA). It was shown that, irrespectively of complex formation conditions (13 mM Mg2+, or 4 mM Mg2+ in the presence of polyamines), the mRNA analog in binary complex with 80S ribosomes was crosslinked with sequence 1840-1849 of 18S rRNA, but in the complexes formed with participation of Phe-TPHKPhe (where the G residue carrying the arylazido group occupied position-3 to the first nucleotide of the UUU codon at the P site) the analog was crosslinked with nucleotide 1207. The presence and the nature of tRNA at the E site had no effect on the environment of position-3 of the mRNA analog. Efficient crosslinking of the mRNA analog with tRNA was observed in all studied types of complex. Modified codon GUA, when located at the E site, underwent crosslinking with both cognate valine tRNA and noncognate aspartate tRNA for which the extent of binding at the E site of 80S ribosomes was almost the same and depended little on Mg2+ concentration and the presence of polyamines.  相似文献   

4.
5.
Nucleotides of 28S rRNA involved in binding of the human 80S ribosome with acceptor ends of the A site and the P site tRNAs were determined using two complementary approaches, namely, cross-linking with application of tRNAAsp analogues substituted with 4-thiouridine in position 75 or 76 and hydroxyl radical footprinting with the use of the full sized tRNA and the tRNA deprived of the 3′-terminal trinucleotide CCA. In general, these 28S rRNA nucleotides are located in ribosomal regions homologous to the A, P and E sites of the prokaryotic 50S subunit. However, none of the approaches used discovered interactions of the apex of the large rRNA helix 80 with the acceptor end of the P site tRNA typical with prokaryotic ribosomes. Application of the results obtained to available atomic models of 50S and 60S subunits led us to a conclusion that the A site tRNA is actually present in both A/A and A/P states and the P site tRNA in the P/P and P/E states. Thus, the present study gives a biochemical confirmation of the data on the structure and dynamics of the mammalian ribosomal pretranslocation complex obtained with application of cryo-electron microscopy and single-molecule FRET [Budkevich et al., 2011]. Moreover, in our study, particular sets of 28S rRNA nucleotides involved in oscillations of tRNAs CCA-termini between their alternative locations in the mammalian 80S ribosome are revealed.  相似文献   

6.
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.  相似文献   

7.
Protein biosynthesis requires numerous conformational rearrangements within the ribosome. The structural core of the ribosome is composed of RNA and is therefore dependent on counterions such as magnesium ions for function. Many steps of translation can be compromised or inhibited if the concentration of Mg(2+) is too low or too high. Conditions previously used to probe the conformation of the mammalian ribosome in vitro used high Mg(2+) concentrations that we find completely inhibit translation in vitro. We have therefore probed the conformation of the small ribosomal subunit in low concentrations of Mg(2+) that support translation in vitro and compared it with the conformation of the 40S subunit at high Mg(2+) concentrations. In low Mg(2+) concentrations, we find significantly more changes in chemical probe accessibility in the 40S subunit due to subunit association or binding of the hepatitis C internal ribosomal entry site (HCV IRES) than had been observed before. These results suggest that the ribosome is more dynamic in its functional state than previously appreciated.  相似文献   

8.
9.
Positioning of each nucleotide of the E site and the P site bound codons with respect to the 18S rRNA on the human ribosome was studied by cross-linking with mRNA analogs, derivatives of the hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group on the second or the third uracil, and a derivative of the dodecaribonucleotide UUAGUAUUUAUU with a similar group on the guanine residue. The location of the modified nucleotides at any mRNA position from -3 to +3 (position +1 corresponds to the 5' nucleotide of the P site bound codon) was adjusted by the cognate tRNAs. A modified uridine at positions from -1 to +3 cross-linked to nucleotide G1207 of the 18S rRNA, and to nucleotide G961 when it was in position -2. A modified guanosine cross-linked to nucleotide G1207 if it was in position -3 of the mRNA. These data indicate that nucleotide G961 of the 18S rRNA is close only to mRNA positions -3 and -2, while G1207 is in the vicinity of positions from -3 to +3. The latter suggests that there is a sharp turn between the P and E site bound codons that brings nucleotide G1207 of the 18S rRNA close to each nucleotide of these codons. This correlates well with X-ray crystallographic data on bacterial ribosomes, indicating existence of a sharp turn between the P site and E site bound codons near a conserved nucleotide G926 of the 16S rRNA (corresponding to G1207 in 18S rRNA) close to helix 23b containing the conserved nucleotide 693 of the 16S rRNA (corresponding exactly to G961 of the 18S rRNA).  相似文献   

10.
The method for isolation of human placenta ribosomal subunits containing intact rRNA has been determined. The method uses fresh unfrozen placenta. Activity of 80S ribosomes obtained via reassociation of 40S and 60S subunits in non-enzymatic poly(U)-mediated Phe-tRNAPhe binding, was near 75% (maximal [14C]Phe-tRNA(Phe) binding was 1.5 mol Phe-tRNA(Phe) per mol of 80S ribosomes). Activity of 80S ribosomes with damaged rRNA isolated from frozen placenta was 2 times lower (the maximum level of poly(U)-dependent Phe-tRNA(Phe) binding was 0.7 mol per mol of ribosomes). The activity 80S ribosomes in poly(U)-mediated synthesis of polyphenylalanine was determined by using fractionated ("ribosomeless") protein synthesising system from rabbit reticulocytes. In this system up to the 50 mol of Phe residues per mol of 80S ribosomes are incorporated in acid insoluble fraction in 1 hour, at 37 degrees C. The obtained level of [14C]phenylalanine incorporation is three times as much as the amount of Phe residues observed for the ribosomal subunits, isolated from frozen placenta.  相似文献   

11.
The 18S rRNA environment of the mRNA at the decoding site of human 80S ribosomes has been studied by cross-linking with derivatives of hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group either at the N7 atom of the guanine or at the C5 atom of the 5'-terminal uracil residue. The location of the codons on the ribosome at A, P, or E sites has been adjusted by the cognate tRNAs. Three types of complexes have been obtained for each type derivative, namely, (1) codon UUU and Phe-tRNAPhe at the P site (codon GUU at the A site), (2) codon UUU and tRNAPhe at the P site and PheVal-tRNAVal at the A site, and (3) codon GUU and Val-tRNAVal at the P site (codon UUU at the E site). This allowed the placement of modified nucleotides of the mRNA analog at positions -3, +1, or +4 on the ribosome. Mild UV irradiation resulted in tRNA-dependent crosslinking of the mRNA analogs to the 18S rRNA. Nucleotide G961 crosslinked to mRNA position -3, nucleotide G1207 to position +1, and A1823 together with A1824 to position +4. All of these nucleotides are located in the most strongly conserved regions of the small subunit RNA structure, and correspond to nucleotides G693, G926, G1491, and A1492 of bacterial 16S rRNA. Three of them (with the exception of G1491) had been found earlier at the 70S ribosomal decoding site. The similarities and differences between the 16S and 18S rRNA decoding sites are discussed.  相似文献   

12.
mRNA analogues-derivatives of oligoribonucleotides consisting of two different codons and bearing an aryl azide group at the 5'-phosphates-were crosslinked to human 80S ribosomes by UV-irradiation of the various model complexes obtained in the presence of the cognate tRNAs. Three sequences, namely pUUUGUU (coding for Phe and Val), pUUCUAAA (first triplet coding for Phe and second being stop-codon), and pGUGUUU (coding for Val and Phe), have been used. Sequences of 18S rRNA containing nucleotides crosslinked to the mRNA analogues were examined by hydrolysis with RNase H in the presence of various cDNA probes. Crosslinked nucleotides were identified by primer extension. In all cases, only nucleotide G-1207 (equivalent to G-926 in Escherichia coli 16S rRNA) has been detected as crosslinked. Crosslinking of the mRNA analogues to the large ribosomal subunit was negligible.  相似文献   

13.
Messenger RNA analogues (42-mers) containing a GAC codon (aspartic acid) in the middle of their sequence followed by a s(4)UGA stop codon were used to identify the components of the human ribosomal A site in direct contact with the photoactivatable 4-thiouridine (s(4)U) residue. We compared the behavior of the nonphased ribosome-mRNA complex, (-)tRNA(Asp), to the one of the phased complex, (+)tRNA(Asp), in the absence and in the presence of eRF1, the eukaryotic class 1 translation termination factor of human origin. The patterns of cross-links obtained for the three complexes were similar to those previously reported for rabbit ribosomes [Chavatte, L., et al. (2001) Eur. J. Biochem. 268, 2896-2904]. Cross-links involving proteins S2, S3, S3a, and S30 were poorly dependent on the presence of tRNA(Asp) and eRF1. Cross-linking to nucleotide C1696 of 18S rRNA occurred in all complexes, but its yield was at least two times higher in the phased complex with an empty A site than in the nonphased complex or when the A site was occupied by eRF1. In contrast, protein S15 cross-linked only in the phased complex in the absence of eRF1. The data obtained point to notable differences in organization of the decoding site between mammalian and prokaryotic ribosomes and to large internal mobility of the components of the tRNA (eRF1)-free A site.  相似文献   

14.
SBP2 is a pivotal protein component in selenoprotein synthesis. It binds the SECIS stem–loop in the 3′ UTR of selenoprotein mRNA and interacts with both the specialized translation elongation factor and the ribosome at the 60S subunit. In this work, our goal was to identify the binding partners of SBP2 on the ribosome. Cross-linking experiments with bifunctional reagents demonstrated that the SBP2-binding site on the human ribosome is mainly formed by the 28S rRNA. Direct hydroxyl radical probing of the entire 28S rRNA revealed that SBP2 bound to 80S ribosomes or 60S subunits protects helix ES7L-E in expansion segment 7 of the 28S rRNA. Diepoxybutane cross-linking confirmed the interaction of SBP2 with helix ES7L-E. Additionally, binding of SBP2 to the ribosome led to increased reactivity toward chemical probes of a few bases in ES7L-E and in the universally conserved helix H89, indicative of conformational changes in the 28S rRNA in response to SBP2 binding. This study revealed for the first time that SBP2 makes direct contacts with a discrete region of the human 28S rRNA.  相似文献   

15.
G Afseth  Y Y Mo    L P Mallavia 《Journal of bacteriology》1995,177(10):2946-2949
Characterization of the rRNA operon from the obligate intracellular bacterium Coxiella burnetii has determined the order of the rRNA genes to be 16S-23S-5S. A 444-bp intervening sequence (IVS) was identified to interrupt the 23S rRNA gene beginning at position 1176. The IVS is predicted to form a stem-loop structure formed by flanking inverted repeats, and the absence of intact 23S rRNA molecules suggests that the loop is removed. An open reading frame in the IVS has been identified that shows 70% similarity at the amino acid level to IVS open reading frames characterized from four species of Leptospira.  相似文献   

16.
Tobacco mosaic virus (TMV) RNA with a long 5'-terminal leader sequence, as well as its isolated leader fragment (called omega), can form disome initiation complexes with wheat germ ribosomes. The second ribosome of the disome complex is bound to the leader sequence, upstream of an 80S particle occupying the AUG-containing initiation site [ Filipowicz and Haenni (1979) Proc. Natl Acad. Sci. USA 76, 3111-3115; Konarska et al. (1981) Eur. J. Biochem. 114, 221-227]. In order to identify the parts of omega important for interaction with ribosomes, the 5'-terminally-labelled omega was treated with alkali and the resultant fragments of different lengths were used in binding experiments. A 16-nucleotide-long fragment bearing the AUU sequence at the 3' end is the shortest oligonucleotide capable of forming 80S complexes with wheat germ ribosomes. Full-length (73 nucleotides) omega with AUG at the 3' terminus is the only RNA fragment supporting disome complex formation. Synthetic oligoribonucleotides were prepared for a study of 80S complex assembly at codons other than AUG. Hexadecanucleotide (A) 13A -U-U and, to lesser extent, also (A) 13A -U-C, (A) 13A -U-A and (A) 13A -C-G bind 80S ribosomes. Formation of the (A) 13A -U-U X 80S complex is dependent on the presence of initiator Met- tRNAMerf . Assembly of the 80S particle at the AUU sequence is not an artifact resulting from the terminal position of this triplet. (A) 13A -U-U elongated with over 100 A residues still efficiently binds an 80S ribosome positioned, as established by ribosome protection experiments, at the AUU triplet. The present results support the notion that 80S initiation-like complexes can be formed at sequences containing AUU codons. The possible function of these complexes as intermediates in initiation of translation of some viral RNAs is discussed.  相似文献   

17.
The 23S rRNA nucleotides 2604-12 and 2448-58 fall within the central loop of domain V, which forms a major part of the peptidyl transferase center of the ribosome. We report the synthesis of radioactive, photolabile 2'-O-methyloligoRNAs, PHONTs 1 and 2, complementary to these nucleotides and their exploitation in identifying 50S ribosomal subunit components neighboring their target sites. Photolysis of the 50S complex with PHONT 1, complementary to nts 2604-12, leads to target site-specific photoincorporation into protein L2 and 23S rRNA nucleotides A886, Alpha1918, A1919, G1922-C1924, U2563, U2586, and C2601. Photolysis of the 50S complex with PHONT 2, complementary to nts 2448-58, leads to target site-specific probe photoincorporation into proteins L2, L3, one or more of proteins L17, L18, L21, and of proteins L9, L15, L16, and 23S rRNA nucleotides C2456 and psi2457. Chemical footprinting studies show that 2'-O-methyloligoRNA binding causes little distortion of the peptidyl transferase center but do provide suggestive evidence for the location of flexible regions within 23S rRNA. The significance of these results for the structure of the peptidyl transferase center is considered.  相似文献   

18.
19.
20.
Nuclear group I introns are parasitic mobile genetic elements occurring in the ribosomal RNA genes of a large variety of microbial eukaryotes. In Acanthamoeba, group I introns were found occurring in the 18S rDNA at four distinct insertion sites. Introns are present as single elements in various strains belonging to four genotypes, T3 (A. griffini), T4 (A. castellanii complex), T5 (A. lenticulata) and T15 (A. jacobsi). While multiple introns can frequently be found in the rDNA of several algae, fungi and slime moulds, they are usually rare and present as single elements in amoebae. We reported herein the characterization of an A. lenticulata strain containing two introns in its 18S rDNA. They are located to already known sites and show basal relationships with respective homologous introns present in the other T5 strains. This is the first and unique reported case of multiple nuclear introns in Acanthamoeba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号