共查询到20条相似文献,搜索用时 0 毫秒
1.
Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells 总被引:2,自引:0,他引:2
Human parainfluenza virus type 3 (HPIV-3) is an airborne pathogen that infects human lung epithelial cells from the apical (luminal) plasma membrane domain. In the present study, we have identified cell surface-expressed nucleolin as a cellular cofactor required for the efficient cellular entry of HPIV-3 into human lung epithelial A549 cells. Nucleolin was enriched on the apical cell surface domain of A549 cells, and HPIV-3 interacted with nucleolin during entry. The importance of nucleolin during HPIV-3 replication was borne out by the observation that HPIV-3 replication was significantly inhibited following (i). pretreatment of cells with antinucleolin antibodies and (ii). preincubation of HPIV-3 with purified nucleolin prior to its addition to the cells. Moreover, HPIV-3 cellular internalization and attachment assays performed in the presence of antinucleolin antibodies and purified nucleolin revealed the requirement of nucleolin during HPIV-3 internalization but not during attachment. Thus, these results suggest that nucleolin expressed on the surfaces of human lung epithelial A549 cells plays an important role during HPIV-3 cellular entry. 相似文献
2.
Natural killer cells regulate T-cell proliferation during human parainfluenza virus type 3 infection
Noone CM Paget E Lewis EA Loetscher MR Newman RW Johnson PA 《Journal of virology》2008,82(18):9299-9302
Human parainfluenza virus type 3 (HPIV3) is a major respiratory pathogen in humans. Failure to induce immunological memory associated with HPIV3 infection has been attributed to inhibition of lymphocyte proliferation. We demonstrate that the inability of mixed lymphocytes to respond to virally infected antigen-presenting cells is due to an interleukin-2-dependent, nonapoptotic mechanism involving natural killer (NK) cells and their influence is exerted in a contact-dependent manner. These results suggest a novel regulatory mechanism for NK cells during HPIV3 infection, offering an explanation for viral persistence and poor memory responses. 相似文献
3.
Mechanism of interference mediated by human parainfluenza virus type 3 infection 总被引:1,自引:0,他引:1
下载免费PDF全文

Horga MA Gusella GL Greengard O Poltoratskaia N Porotto M Moscona A 《Journal of virology》2000,74(24):11792-11799
Viral interference is characterized by the resistance of infected cells to infection by a challenge virus. Mechanisms of viral interference have not been characterized for human parainfluenza virus type 3 (HPF3), and the possible role of the neuraminidase (receptor-destroying) enzyme of the hemagglutinin-neuraminidase (HN) glycoprotein has not been assessed. To determine whether continual HN expression results in depletion of the viral receptors and thus prevents entry and cell fusion, we tested whether cells expressing wild-type HPF3 HN are resistant to viral infection. Stable expression of wild-type HN-green fluorescent protein (GFP) on cell membranes in different amounts allowed us to establish a correlation between the level of HN expression, the level of neuraminidase activity, and the level of protection from HPF3 infection. Cells with the highest levels of HN expression and neuraminidase activity on the cell surface were most resistant to infection by HPF3. To determine whether this resistance is attributable to the viral neuraminidase, we used a cloned variant HPF3 HN that has two amino acid alterations in HN leading to the loss of detectable neuraminidase activity. Cells expressing the neuraminidase-deficient variant HN-GFP were not protected from infection, despite expressing HN on their surface at levels even higher than the wild-type cell clones. Our results demonstrate that the HPF3 HN-mediated interference effect can be attributed to the presence of an active neuraminidase enzyme activity and provide the first definitive evidence that the mechanism for attachment interference by a paramyxovirus is attributable to the viral neuraminidase. 相似文献
4.
5.
6.
7.
Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells 总被引:10,自引:0,他引:10
Epstein-Barr virus (EBV) initially enters the body through the oropharyngeal mucosa and subsequently infects B lymphocytes through their CD21 (CR2) complement receptor. Mechanisms of EBV entry into and release from epithelial cells are poorly understood. To study EBV infection in mucosal oropharyngeal epithelial cells, we established human polarized tongue and pharyngeal epithelial cells in culture. We show that EBV enters these cells through three CD21-independent pathways: (i) by direct cell-to-cell contact of apical cell membranes with EBV-infected lymphocytes; (ii) by entry of cell-free virions through basolateral membranes, mediated in part through an interaction between beta1 or alpha5beta1 integrins and the EBV BMRF-2 protein; and (iii) after initial infection, by virus spread directly across lateral membranes to adjacent epithelial cells. Release of progeny virions from polarized cells occurs from both their apical and basolateral membranes. These data indicate that multiple approaches to prevention of epithelial infection with EBV will be necessary. 相似文献
8.
人3型副流感病毒是一种主要感染人类肺部上皮细胞的副黏病毒,可引起肺炎和支气管炎,在婴幼儿和免疫力低下的成人中有较高的发病率。经过多年的研究,对人3型副流感病毒疫苗的研究取得了重要的进展,但还没有有效的抗病毒药物和批准的疫苗上市。目前研究主要集中在减毒活疫苗及亚单位疫苗等,对人3型副流感病毒当前疫苗的研究情况做简要的综述。 相似文献
9.
《微生物学免疫学进展》2015,(4)
人3型副流感病毒(Human Parainfluenza Virus type 3,HPIV-3)是引起婴幼儿严重细支气管炎及肺炎等下呼吸道疾病的主要病原体,其在发达国家和发展中国家都造成了沉重的疾病负担。迄今,对HPIV-3感染的预防和治疗都还没有有效的疫苗和药物,因此WHO将HPIV-3疫苗列为未来重点研发的疫苗。近年来,随着重组技术和反向遗传学的发展,HPIV-3疫苗的研制取得了重要进展,部分疫苗已进入临床评价阶段。就HPIV-3的生物学特性如病毒结构特征、复制过程、流行病学特征,以及近年来传统冷适应减毒活疫苗、亚单位疫苗、以反向遗传学为基础的新型减毒活疫苗的研制成果及临床试验进展作简要综述。 相似文献
10.
《微生物学免疫学进展》2017,(2)
人副流感病毒(human parainfluenza viruses,HPIVs)是引起婴幼儿支气管炎和肺炎的主要病原体,人3型副流感病毒(human parainfluenza viruses type 3,HPIV-3)是HPIVs中最主要的型别。目前尚无针对HPIVs的上市疫苗和有效的抗病毒药物,研发减毒活疫苗是目前开发HPIVs疫苗的方向。本文主要对HPIV-3减毒活疫苗的研究进展作一综述。 相似文献
11.
12.
Expression of the surface glycoproteins of human parainfluenza virus type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector 总被引:5,自引:0,他引:5
下载免费PDF全文

Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39 degrees C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37 degrees C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses. 相似文献
13.
14.
Ray S Misso NL Lenzo JC Robinson C Thompson PJ 《Free radical biology & medicine》1999,27(11-12):1346-1356
Despite the central role of gamma-glutamylcysteine synthetase (gammaGCS) in lung antioxidant defenses, the limited studies of the activity of this enzyme in respiratory cells have produced variable results. This study has examined the factors, which may influence the measurement of gammaGCS activity in cultured human lung epithelial cells (A549). Although a source of potential error, gammaGCS activity in A549 cell extracts did not vary significantly when appropriately assayed by three different methods or after removal of the endogenous inhibitor, glutathione (GSH). However, gammaGCS activity did increase significantly during the early stages of cell proliferation (3.50 +/- 0.31 vs. 2.35 +/- 0.16 nmol/min/10(6) cells for baseline, p < .001) and thereafter returned to baseline levels during the later stages of cell growth. Variations in initial plating density also significantly altered gammaGCS activity (3.11 +/- 0.14 vs. 4.04 +/- 0.50 nmol/min/10(6) cells, at 0.25 x 10(5) and 0.58 x 10(5) cells/cm2, respectively, p < .001) and GSH content (45.43 +/- 4.43 vs. 63.64 +/- 3.28 nmol/10(6) cells at 0.25 x 10(5) and 0.58 x 10(5) cells/cm2, respectively, p < .001) during the early stages of cell proliferation. In addition, gammaGCS activity and GSH content were highest in A549 cells grown in medium containing cystine as the predominant sulfur-containing amino acid. These results suggest that gammaGCS activity of A549 cells is strongly dependent on initial plating density, stage of cell growth and sulfur amino acid content of the medium and may account for some of the variation in values reported by different investigators. Whether gammaGCS has an important role in the early phase of cell proliferation needs further investigation. 相似文献
15.
Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium 总被引:2,自引:0,他引:2
下载免费PDF全文

Zhang L Bukreyev A Thompson CI Watson B Peeples ME Collins PL Pickles RJ 《Journal of virology》2005,79(2):1113-1124
We constructed a human recombinant parainfluenza virus type 3 (rPIV3) that expresses enhanced green fluorescent protein (GFP) and used this virus, rgPIV3, to characterize PIV3 infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). The apical surface of HAE was highly susceptible to rgPIV3 infection, whereas only occasional cells were infected when virus was applied to the basolateral surface. Infection involved exclusively ciliated epithelial cells. There was little evidence of virus-mediated cytopathology and no spread of the virus beyond the ciliated cell types. Infection of ciliated cells by rgPIV3 was sensitive to a neuraminidase specific for alpha2-6-linked sialic acid residues, but not to a neuraminidase that cleaves alpha2-3- and alpha2-8-linked sialic acid residues. This provided evidence that rgPIV3 utilizes alpha2-6-linked sialic acid residues for initiating infection, a specificity also described for human influenza viruses. The PIV3 fusion (F) glycoprotein was trafficked exclusively to the apical surface of ciliated cells, which also was the site of release of progeny virus. F glycoprotein localized predominately to the membranes of the cilial shafts, suggesting that progeny viruses may bud from cilia per se. The polarized trafficking of F glycoprotein to the apical surface also likely restricts its interaction with neighboring cells and could account for the observed lack of cell-cell fusion. HAE derived from cystic fibrosis patients was not more susceptible to rgPIV3 infection but did exhibit limited spread of virus due to impaired movement of lumenal secretions due to compromised function of the cilia. 相似文献
16.
17.
Access to nectin favors herpes simplex virus infection at the apical surface of polarized human epithelial cells
下载免费PDF全文

Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV. 相似文献
18.
19.
20.
Fusion properties of cells persistently infected with human parainfluenza virus type 3: participation of hemagglutinin-neuraminidase in membrane fusion. 总被引:1,自引:21,他引:1
下载免费PDF全文

Cells persistently infected with human parainfluenza virus type 3 (HPF3) exhibit a novel phenotype. They are completely resistant to fusion with each other but readily fuse with uninfected cells. We demonstrate that the inability of these cells to fuse with each other is due to a lack of cell surface neuraminic acid. Neuraminic acid is the receptor for the HPF3 hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. Uninfected CV-1 cells were treated with neuraminidase and then tested for their ability to fuse with the persistently infected (pi) cells. Neuraminidase treatment totally abolished cell fusion. To extend this result, we used a cell line deficient in sialic acid and demonstrated that these cells, like the neuraminidase-treated CV-1 cells, were unable to fuse with pi cells. We then tested whether mimicking the agglutinating function of the HN molecule with lectins would result in cell fusion. We added a panel of five lectins to the neuraminic acid-deficient cells and showed that binding of these cells to the pi cells did not result in fusion; the lectins could not substitute for interaction of neuraminic acid with the HN molecule in promoting membrane fusion. These results provide compelling evidence that the HN molecule of HPF3 and its interaction with neuraminic acid participate in membrane fusion and that cell fusion is mediated by an interaction more complex than mere juxtaposition of the cell membranes. 相似文献