首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sought to determine if decrements in the mass of fat-free body mass (FFM) and other lean tissue compartments, and related changes in protein metabolism, are appropriate for weight loss in obese older women. Subjects were 14 healthy weight-stable obese (BMI > or =30 kg/m(2)) postmenopausal women >55 yr who participated in a 16-wk, 1, 200 kcal/day nutritionally complete diet. Measures at baseline and 16 wk included FFM and appendicular lean soft tissue (LST) by dual-energy X-ray absorptiometry; body cell mass (BCM) by (40)K whole body counting; total body water (TBW) by tritium dilution; skeletal muscle (SM) by whole body MRI; and fasting whole body protein metabolism through L-[1-(13)C]leucine kinetics. Mean weight loss (+/-SD) was 9.6+/-3.0 kg (P<0.0001) or 10.7% of initial body weight. FFM decreased by 2.1+/-2.6 kg (P = 0.006), or 19.5% of weight loss, and did not differ from that reported (2.3+/-0.7 kg). Relative losses of SM, LST, TBW, and BCM were consistent with reductions in body weight and FFM. Changes in [(13)C]leucine flux, oxidation, and synthesis rates were not significant. Follow-up of 11 subjects at 23.7 +/-5.7 mo showed body weight and fat mass to be below baseline values; FFM was nonsignificantly reduced. Weight loss was accompanied by body composition and protein kinetic changes that appear appropriate for the magnitude of body mass change, thus failing to support the concern that diet-induced weight loss in obese postmenopausal women produces disproportionate LST losses.  相似文献   

2.

Background

Obesity and overweight are increasing in prevalence in developed countries as a result of changing dietary habits and a lack of physical activity. The purpose of the present study was to evaluate the changes in body composition during short-term overfeeding using the three-component model, which is composed of fat mass (FM), total body water (TBW), and fat-free dry solids (FFDS).

Methods

Ten healthy men completed 3 days of overfeeding during which they consumed 1,500 kcal/day more energy than consumed in their normal diets. Body composition was evaluated at three time points: the day before and after their normal diets and the day after the 3-day overfeeding diet.

Results

Before and after their normal diets, there were no significant differences in body weight and composition, but after 3 days of overfeeding, body weight, TBW, and FFDS increased 0.7, 0.7, and 0.2 kg, respectively (P <0.0001). There was no significant difference in FM between the normal and overfeeding diets.

Conclusion

This study suggests that TBW gain contributes to weight gain following a short-term overfeeding.  相似文献   

3.
To clarify the impact of vigorous physical training on in vivo insulin action and glucose metabolism independent of the intervening effects of concomitant changes in body weight and composition and residual effects of an acute exercise session, 10 lean, 10 obese, and 6 diet-controlled type II diabetic men trained for 12 wk on a cycle ergometer 4 h/wk at approximately 70% of maximal O2 uptake (VO2max) while body composition and weight were maintained by refeeding the energy expended in each training session. Before and 4-5 days after the last training session, euglycemic hyperinsulinemic (40 mU.m2.min-1) clamps were performed at a plasma glucose of 90 mg/dl, combined with indirect calorimetry. Total insulin-stimulated glucose disposal (M) was corrected for residual hepatic glucose output. Body weight, fat, and fat-free mass (FFM) did not change with training, but cardiorespiratory fitness increased by 27% in all groups. Before and after training, M was lower for the obese (5.33 +/- 0.39 mg.kg FFM-1.min-1 pretraining; 5.33 +/- 0.46 posttraining) than for the lean men (9.07 +/- 0.49 and 8.91 +/- 0.60 mg.kg FFM-1.min-1 for pretraining and posttraining, respectively) and lower for the diabetic (3.86 +/- 0.44 and 3.49 +/- 0.21) than for the obese men (P less than 0.001). Insulin sensitivity was not significantly altered by training in any group, but basal hepatic glucose production was reduced by 22% in the diabetic men. Thus, when intervening effects of the last exercise bout or body composition changes were controlled, exercise training per se leading to increased cardiorespiratory fitness had no independent impact on insulin action and did not improve the insulin resistance in obese or diabetic men.  相似文献   

4.
We tested the hypothesis that modest, overfeeding-induced weight gain would increase sympathetic neural activity in nonobese humans. Twelve healthy males (23 +/- 2 years; body mass index, 23.8 +/- 0.7) were overfed approximately 1,000 kcal/day until a 5-kg weight gain was achieved. Muscle sympathetic nerve activity (MSNA, microneurography), blood pressure, body composition (dual energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured at baseline and following 4 wk of weight stability at each individual's elevated body weight. Overfeeding increased body weight (73.5 +/- 3.1 vs. 78.4 +/- 3.2 kg, P < 0.001) and body fat (14.9 +/- 1.2 vs. 18 +/- 1.1 kg, P < 0.001) in 42 +/- 8 days. Total abdominal fat increased (220 +/- 22 vs. 266 +/- 22 cm(2), P < 0.001) with weight gain, due to increases in both subcutaneous (158 +/- 15 vs. 187 +/- 12 cm(2), P < 0.001) and visceral fat (63 +/- 8 vs. 79 +/- 12 cm(2), P = 0.004). As hypothesized, weight gain elicited increases in MSNA burst frequency (32 +/- 2 vs. 38 +/- 2 burst/min, P = 0.002) and burst incidence (52 +/- 4 vs. 59 +/- 3 bursts/100 heart beats, P = 0.026). Systolic, but not diastolic blood pressure increased significantly with weight gain. The change in MSNA burst frequency was correlated with the percent increase in body weight (r = 0.59, P = 0.022), change in body fat (r = 0.52, P = 0.043) and percent change in body fat (r = 0.51, P = 0.045). The results of the current study indicate that modest diet-induced weight gain elicits sympathetic neural activation in nonobese males. These findings may have important implications for understanding the link between obesity and hypertension.  相似文献   

5.
Early pregnancy is characterized by the institution of a high-flow low-resistance circulation. In this study, we tested the hypothesis that these hemodynamic changes develop independently of changes in basal metabolic rate. In 12 healthy women, we determined and calculated once during the follicular phase (day 5 +/- 2) and at 6, 8, 10, and 12 wk of pregnancy the following variables: body weight and length, body mass index, fat-free mass (FFM), mean arterial pressure (MAP), heart rate (HR), stroke volume, cardiac output (CO), total peripheral vascular resistance (TPVR), resting energy expenditure (REE), FFM REE (REE(FFM)), and respiratory quotient (RQ). At 6 wk of gestational age, HR and CO had increased, whereas MAP and TPVR had decreased. These changes persisted throughout the study period. Meanwhile, REE, REE(FFM), RQ, FFM, and body weight did not change consistently. The changes with pregnancy in hemodynamics did not correlate with those in basal metabolic rate. In early pregnancy, the institution of a high-flow low-resistance circulation develops without a concomitant rise in basal metabolic rate. These findings support the concept that the hemodynamic changes in early pregnancy develop independently of concomitant changes in basal metabolic rate.  相似文献   

6.
Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in 23 older, obese men and women (aged 66 +/- 1 yr, body mass index 33.2 +/- 1.4 kg/m(2)) with impaired glucose tolerance. All volunteers undertook 12 wk of aerobic exercise training [5 days/wk for 60 min at 75% maximal oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (Vo(2max)), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin, and basal fat oxidation were greater in the hypocaloric group. Following the intervention, there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = -0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007) but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake in addition to exercise training.  相似文献   

7.
The body composition of living gray seals (Halichoerus grypus) can be accurately predicted from a two-step model that involves measurement of total body water (TBW) by 2H or 3H dilution and application of predictive relationships between body components and TBW that were derived empirically by slaughter chemical analysis. TBW was overestimated by both 2HHO and 3HHO dilution; mean overestimates were 2.8 +/- 0.9% (SE) with 2H and 4.0 +/- 0.6% with 3H. The relationships for prediction of total body fat (TBF), protein (TBP), gross energy (TBGE), and ash (TBA) were as follows: %TBF = 105.1 - 1.47 (%TBW); %TBP = 0.42 (%TBW) - 4.75; TBGE (MJ) = 40.8 (mass in kg) - 48.5 (TBW in kg) - 0.4; and TBA (kg) = 0.1 - 0.008 (mass in kg) + 0.05 (TBW in kg). These relationships are applicable to gray seals of both sexes over a wide range of age and body conditions, and they predict the body composition of gray seals more accurately than the predictive equations derived from ringed seals (Pusa hispida) (Stirling et al., Can. J. Zool. 53: 1021-1027, 1975) and from the equation of Pace and Rathbun (J. Biol. Chem. 158: 685-691, 1945), which has been reported to be generally applicable to mammals.  相似文献   

8.
The influence of creatine supplementation on substrate utilization during rest was investigated using a double-blind crossover design. Ten active men participated in 12 wk of weight training and were given creatine and placebo (20 g/day for 4 days, then 2 g/day for 17 days) in two trials separated by a 4-wk washout. Body composition, substrate utilization, and strength were assessed after weeks 2, 5, 9, and 12. Maximal isometric contraction [1 repetition maximum (RM)] leg press increased significantly (P < 0.05) after both treatments, but 1-RM bench press was increased (33 +/- 8 kg, P < 0.05) only after creatine. Total body mass increased (1.6 +/- 0.5 kg, P < 0.05) after creatine but not after placebo. Significant (P < 0.05) increases in fat-free mass were found after creatine and placebo supplementation (1.9 +/- 0.8 and 2.2 +/- 0.7 kg, respectively). Fat mass did not change significantly with creatine but decreased after the placebo trial (-2.4 +/- 0.8 kg, P < 0.05). Carbohydrate oxidation was increased by creatine (8.9 +/- 4.0%, P < 0.05), whereas there was a trend for increased respiratory exchange ratio after creatine supplementation (0.03 +/- 0.01, P = 0.07). Changes in substrate oxidation may influence the inhibition of fat mass loss associated with creatine after weight training.  相似文献   

9.
Bioelectrical impedance analysis (BIA) is a convenient, inexpensive, and noninvasive technique for measuring body composition. BIA has been strongly correlated with total body water (TBW) and also has been validated against hydrodensitometry (HD). The accuracy and clinical utility of BIA and HD during periods of substantial weight loss remain controversial. We measured body composition in moderately and severely obese patients serially using both methods during a very-low-energy diet (VLED). Mean initial weight in these patients was 116 (± 30) kg (range, 74–196 kg). Mean weight loss was 24 (± 13) kg with a decrease in fat mass (FM) by HD of 20 kg (p<0.001) and a decrease in fat-free mass (FFM) of 3.6 kg (p<0.05). Loss of FFM is best predicted by the rate (kg/wk) of weight loss (r2 = 0.86, p<0.0001). FFM, as predicted from BIA equations, was highly correlated with FFM as estimated by HD during all testing sessions (r=0.92-0.98). Although highly correlated, BIA overestimated FFM relative to HD and this difference appeared to be more pronounced for taller patients with greater truncal obesity. Although the discrepancy was no greater during weight-loss treatment, the level of disagreement was considerable. Therefore, the two methods cannot be used interchangeably to monitor relative changes in body composition in patients with obesity during treatment with VLED. The discrepancy between BIA and HD may be caused by body mass distribution considerations and by perturbations in TBW which affect the hydration quotient for FFM (BIA) and/or which affect the density constants for FFM and FM (HD).  相似文献   

10.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

11.
The purpose of this study was to examine the effects of a combination of effervescent creatine, ribose, and glutamine on muscular strength (MS), muscular endurance (ME) and body composition (BC) in resistance-trained men. Subjects were 28 men (age: 22.3 +/- 1.7 years; weight: 85.8 +/- 12.1 kg; height: 1.8 +/- 0.1 m) who had 2 or more years of resistance-training experience. A double blind, randomized trial was completed involving supplementation or placebo control and a progressive resistance-training program for 8 weeks. Dependent measures were assessed at baseline and after 8 weeks of resistance training. Both groups significantly improved MS and ME while the supplement group significantly increased body weight and fat-free mass. Control decreased body fat and increased fat-free mass. This study demonstrated that the supplement group did not enhance MS, ME, or BC significantly more than control after an 8-week resistance-training program.  相似文献   

12.
We examined the effects of weight loss induced by diet-orlistat (DO) and diet-orlistat combined with exercise (DOE) on maximal work rate production (Wmax) capacity in obese patients. Total of 24 obese patients were involved in this study. Twelve of them were subjected to DO therapy only and the remaining 12 patients participated in a regular aerobic exercise-training program in addition to DO therapy (DOE). Each patient performed two incremental ramp exercise tests up to exhaustion using an electromagnetically-braked cycle ergometer: one at the onset and one at the end of the 4th week. DOE therapy caused a significant decrease in total body weight: 101.5+/-17.4 kg (basal) vs 96.3+/-17.3 kg (4 wk) associated with a significant decrease in body fat mass: 45.0+/-10.5 kg (basal) vs 40.9+/-9.8 kg (4 wk). DO therapy also resulted in a significant decrease of total body weight 94.9+/-14.9 kg (basal) vs 91.6+/-13.5 kg (4 wk) associated with small but significant decreases in body fat mass: 37.7+/-5.6 kg (basal) to 36.0+/-6.2 kg (4 wk). Weight reduction achieved during DO therapy was not associated with increased Wmax capacity: 106+/-32 W (basal) vs 106+/-33 W (4 wk), while DOE therapy resulted in a markedly increased Wmax capacity: 109+/-39 W (basal) vs 138+/-30 W (4 wk). DO therapy combined with aerobic exercise training resulted in a significant reduction of fat mass tissue and markedly improved the aerobic fitness and Wmax capacities of obese patients. Considering this improvement within such a short period, physicians should consider applying an aerobic exercise-training program to sedentary obese patients for improving their physical fitness and thereby reduce the negative outcomes of obesity.  相似文献   

13.
Body composition estimates from dual-energy X-ray absorptiometry and stable isotope dilution ((2)H and (18)O) were compared in 61 rhesus monkeys (Macaca mulatta) from the ongoing long-term energy restriction study at the University of Wisconsin. Their average age was 18.9 +/- 2.5 y/o. Of the animals, 51% were in the energy restricted group and 38% were females. Although the correlation between methods was highly significant for fat mass (R(2) = 0.97, SEE = 0.25 kg or 7.5%, P < 0.0001) and fat-free mass (R(2) = 0.98, SEE = 0.29 kg or 3.6%, P < 0.0001), we observed that dual-energy X-ray absorptiometry underestimated fat mass by 0.67 +/- 0.26 kg (7.5%, P < 0.0001) and overestimated fat-free mass by 0.57 +/- 0.29 kg (20%, P < 0.0001) when compared with isotope dilution. Taken together with data from the literature, the present results emphasize the usefulness of dual-energy X-ray absorptiometry to derive body composition and thus nutritional status in monkeys, but demonstrate the importance of validation experiments for a given DXA model and software.  相似文献   

14.
The hypothesis that high-altitude weight loss can be prevented by increasing energy intake to meet energy requirement was tested in seven men, 23.7 +/- 4.3 (SD) yr, taken to 4,300 m for 21 days. Energy intake required to maintain body weight at sea level was found to be 3,118 +/- 300 kcal/day, as confirmed by nitrogen balance. Basal metabolic rate (BMR), determined by indirect calorimetry, increased 27% on day 2 at altitude and then decreased and reached a plateau at 17% above the sea level BMR by day 10. Energy expended during strenuous activities was 37% lower at altitude than at sea level. Fecal excretion of energy, nitrogen, total fiber, and total volatile fatty acids was not significantly affected by altitude. Energy intake at altitude was adjusted after 1 wk, on the basis of the increased BMR, to 3,452 +/- 452 kcal/day. Mean nitrogen balance at altitude was negative (-0.25 +/- 0.71 g/day) before energy intake was adjusted but rose significantly thereafter (0.20 +/- 0.71 and 0.44 +/- 0.66 g/day during weeks 2 and 3). Mean body weight decreased 2.1 +/- 1.0 kg over the 3 wk of the study, but the rate of weight loss was significantly diminished after the increase in energy intake (201 +/- 75 vs. 72 +/- 48 g/day). Individual regression lines drawn through 7-day segments of body weight showed that in four of seven subjects the slopes of body weight were not significantly different from zero after the 2nd wk. Thus weight loss ceased in four of seven men in whom increased BMR at altitude was compensated with increased energy intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

16.
Fifty-five soldiers have been observed over a vigorous 10-day sledging patrol in the Canadian arctic and subarctic. Initial observations showed a low level of physical fitness (26% body fat, aerobic power 41.9 +/- 7.8 ml kg-1 min-1, handgrip force 43.7 +/- 7.2 kg). Over 2-week northern sojourn, energy expenditures as measured by a Kofranyi-Michaelis respirometer and diary observation averaged 3248 kcal (13.6 MJ) day-1, with a small (152 kcal (633 kJ)) positive daily energy balance. A weight loss of 1 kg, presumably water, was made good within 1 week of return to the south. A fat loss of some 3.9 kg was probably attributable largely to the demands of lean tissue synthesis. The lean mass was increased by 3.9 kg over the trial, with parallel gains of muscle force and aerobic power. The rapid mobilization of depot fat led to marked ketonuria.  相似文献   

17.
The aim of this cross-sectional study was to assess and compare thyroid volume and its derminants in a cohort of type 1 diabetes mellitus (DM1) and compare the results to a healthy control group. We studied 65 DM1 patients treated with an intensive insulin regimen and 65 matched controls. In all participants we evaluated weight, height, BMI, waist-hip ratio, body surface area and body composition variables determined by using a bioelectrical impedance analyser. Thyroid size was estimated by ultrasonography. We determined basal TSH, anti-thyroid antibodies and urinary iodine excretion. Body weight, height, BMI and body surface area were similar in DM1 patients and in controls. Fat-free mass was higher in both male and female DM1 patients than in controls (64.4 +/- 6.9 vs. 60.4 +/- 8.2 kg, p=0.03 and 48.3 +/- 5.7 vs. 45.4 +/- 6, p=0.04, respectively), and fat mass was lower in male DM1 patients than in controls (9.7 +/- 7 vs. 14.2 +/- 8.1 kg, p=0.01). Thyroid volume was greater in both male and female DM1 patients than in controls (11.12 +/- 2.87 vs. 9.63 +/- 2.27 ml, p=0.0001 and 9.5 +/- 2.3 vs. 7.7 +/- 2 ml, p=0.002, respectively). Urinary iodine excretion was similar in the two groups. In both DM1 patients and controls, thyroid volume correlated with weight, height, BMI, waist-hip ratio, body surface area, fat-free mass and the multivariate linear regression analysis with thyroid volume as the dependent variable showed that fat-free mass in either group was the only significant determinant of thyroid volume. We conclude that DM1 patients had larger thyroid volume compared with healthy controls with similar anthropometry; body composition is different in DM1 patients and that the anthropometric and body composition variables, especially fat-free mass and body surface area, predict thyroid volume either in DM1 patients or in healthy controls.  相似文献   

18.
We examined body composition in barnacle geese (Branta leucopsis) by proximate carcass analysis and by deuterium isotope dilution. We studied the effect of isotope equilibration time on the accuracy of total body water (TBW) estimates and evaluated models to predict fat-free mass (FFM) and fat mass (FM) from different measurements varying in their level of invasiveness. Deuterium enrichment determined at 45, 90, and 180 min after isotope injection did not differ significantly. At all sampling intervals, isotope dilution spaces (TBW(d)) consistently overestimated body water determined by carcass analysis (TBW(c)). However, variance in the deviation from actual TBW was higher at the 45-min sampling interval, whereas variability was the same at 90 and 180 min, indicating that 90 min is sufficient time to allow for adequate equilibration. At 90 min equilibration time, deuterium isotope dilution overestimated TBW(c) by 7.1% +/= 2.6% (P < 0.001, paired t-test, n=20). This overestimate was consistent over the range of TBW studied, and TBW(c) could thus be predicted from TBW(d) (r2=0.976, P<0.001). Variation in TBW(c) and TBW(d) explained, respectively, 99% and 98% of the variation in FFM. FM could be predicted with a relative error of ca. 10% from TBW estimates in combination with body mass (BM). In contrast, BM and external body measurements allowed only poor prediction. Abdominal fat fresh mass was highly correlated to total FM and, if the carcass is available, allows simple means of fat prediction without dissecting the entire specimen.  相似文献   

19.
The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g., lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise is limited. A randomized controlled trial was performed in healthy, sedentary, moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous sedentary control group, 21 to a moderate-exercise (MOD; 300 kcal/day), and 22 to a high-exercise (HIGH; 600 kcal/day) group for 13 wk, corresponding to ~30 and 60 min of daily aerobic exercise, respectively. Body weight (MOD: -3.6 kg, P < 0.001; HIGH: -2.7 kg, P = 0.01) and fat mass (MOD: -4.0 kg, P < 0.001 and HIGH: -3.8 kg, P < 0.001) decreased similarly in both exercise groups. Although the exercise-induced energy expenditure in HIGH was twice that of MOD, the resulting accumulated energy balance, calculated from changes in body composition, was not different (MOD: -39.6 Mcal, HIGH: -34.3 Mcal, not significant). Energy balance was 83% more negative than expected in MOD, while it was 20% less negative than expected in HIGH. No statistically significant changes were found in energy intake or nonexercise physical activity that could explain the different compensatory responses associated with 30 vs. 60 min of daily aerobic exercise. In conclusion, a similar body fat loss was obtained regardless of exercise dose. A moderate dose of exercise induced a markedly greater than expected negative energy balance, while a higher dose induced a small but quantifiable degree of compensation.  相似文献   

20.
Total body water (TBW), lean body mass (LBM), and triglyceride mass were measured in 23 5-yr-old baboons (13 females and 10 males). Male baboons weighed more, had more LBM, more TBW, and contained less triglyceride mass per unit body weight than female baboons. Among all baboons, triglyceride mass per unit body weight ranged from 2.4 to 33.5%. The ratio TBW:LBM ranged from 0.70 to 0.92, increasing (r = 0.98) with increased body triglyceride content (both percent and absolute mass) in both male and female baboons. However, the water content per unit weight of tissues free of fat cells (liver, lungs, kidneys, central nervous system, eyes, tongue) was nearly constant at 0.73 +/- 0.02. The increase in TBW:LBM is more than can be expected from the water in the increased adipose tissue mass. We conclude that TBW:LBM is not constant but is influenced by body triglyceride content in baboons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号