首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit muscle phosphorylase b reacts with the phosphate-like reagent potassium ferrate, K2FeO4, a potent oxidizing agent. The reaction results in inactivation of the enzyme and abolition of the ability of the enzyme to bind 5'-AMP. Activating and nonactivating nucleotides which bind at the 5'-AMP binding site such as 5'-AMP, 2'-AMP, 3'-AMP, and 5'-IMP substantially protect the enzyme from inactivation by ferrate. One to two residues of tyrosine and approximately 1 residue of cysteine are modified by ferrate under the conditions employed. Tyrosine is protected by 5-AMP, whereas cysteine is not. The tyrosine modification is suggested as the inactivating chemical reaction. The location of the inactivating reaction is suggested to be in or near the 5'-AMP binding site. The structural and chemical properties of ferrate ion are discussed and compared to those of phosphate. Ferrate ion may be a reagent useful for phosphate group binding site-directed modification of proteins.  相似文献   

2.
D C Phelps  Y Hatefi 《Biochemistry》1985,24(14):3503-3507
Membrane-bound and purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) was inhibited by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), which is an analogue of TH substrates and their competitive inhibitors, namely, 5'-, 2'-, or 3'-AMP. NAD(H) and analogues, NADP, 5'-AMP, 5'-ADP, and 2'-AMP/3'-AMP mixed isomers protected TH against inhibition by FSBA, but NADPH accelerated the inhibition rate. In the absence of protective ligands or in the presence of NADP, FSBA appeared to modify the NAD(H) binding site of TH, because, unlike unmodified TH, the enzyme modified by FSBA under these conditions did not bind to an NAD-affinity column (NAD-agarose). However, when the NAD(H) binding site of TH was protected in the presence of 5'-AMP or NAD, then FSBA modification resulted in an inhibited enzyme that did bind to NAD-agarose, suggesting FSBA modification of the NADP(H) binding site or an essential residue outside the active site. [3H]FSBA was covalently bound to TH, and complete inhibition corresponded to the binding of about 0.5 mol of [3H]FSBA/mol of TH. Since purified TH is known to be dimeric in the isolated state, this binding stoichiometry suggests half-of-the-sites reactivity. A similar binding stoichiometry was found earlier for complete inhibition of TH by [14C]DCCD [Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The active site directed labeling of TH by radioactive FSBA should allow isolation of appropriate peptides for sequence analysis of the NAD(H) and possibly the NADP(H) binding domains.  相似文献   

3.
Binuclear metallophosphoesterases are an enzyme superfamily defined by a shared fold and a conserved active site. Although many family members have been characterized biochemically or structurally, the physiological substrates are rarely known, and the features that determine monoesterase versus diesterase activity are obscure. In the case of the dual phosphomonoesterase/diesterase enzyme CthPnkp, a phosphate-binding histidine was implicated as a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity. Here we tested this model by comparing the catalytic repertoires of Mycobacterium tuberculosis Rv0805, which has this histidine in its active site (His(98)), and Escherichia coli YfcE, which has a cysteine at the equivalent position (Cys(74)). We find that Rv0805 has a previously unappreciated 2',3'-cyclic nucleotide phosphodiesterase function. Indeed, Rv0805 was 150-fold more active in hydrolyzing 2',3'-cAMP than 3',5'-cAMP. Changing His(98) to alanine or asparagine suppressed the 2',3'-cAMP phosphodiesterase activity of Rv0805 without adversely affecting hydrolysis of bis-p-nitrophenyl phosphate. Further evidence for a defining role of the histidine derives from our ability to convert the inactive YfcE protein to a vigorous and specific 2',3'-cNMP phosphodiesterase by introducing histidine in lieu of Cys(74). YfcE-C74H cleaved the P-O2' bond of 2',3'-cAMP to yield 3'-AMP as the sole product. Rv0805, on the other hand, hydrolyzed either P-O2' or P-O3' to yield a mixture of 3'-AMP and 2'-AMP products, with a bias toward 3'-AMP. These reaction outcomes contrast with that of CthPnkp, which cleaves the P-O3' bond of 2',3'-cAMP to generate 2'-AMP exclusively. It appears that enzymic features other than the phosphate-binding histidine can influence the orientation of the cyclic nucleotide and thereby dictate the choice of the leaving group.  相似文献   

4.
The kinetics of "P"-site-mediated inhibition of adenylyl cyclase was studied with the detergent-solubilized enzyme from rat brain. Mn2(+)-activated adenylyl cyclase exhibited typical noncompetitive inhibition by 2'-d3'-AMP or 2',5'-dideoxyadenosine (2',5'-ddAdo). However, enzyme that was preactivated with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) or proteolytically with ninhibin (+ GTP gamma S) exhibited apparently uncompetitive inhibition with either 2'-d3'-AMP or 2',5'-ddAdo and with either MgATP or MgApp(NH)p (adenosine 5'-(beta gamma-imino)triphosphate) as substrate. Inhibition increased with increasing substrate concentration, consistent with distinct domains for catalysis and the P-site and the formation of a 2'-d3'-AMP.C.MgATP complex. This conclusion was supported by the kinetics of product inhibition. For both cAMP and inorganic pyrophosphate (MgPPi) inhibition was mixed, suggesting that product release is likely random sequential. Although MgPPi enhanced inhibition in the presence of P-site agonist, it did not affect the dissociation constant for P-site agonist. The uncompetitive character of P-site-mediated inhibition and the independence of inhibition by MgPPi and P-site agonist imply that the P-site binding domain is distinct from the substrate binding domain. Given the structural requirements for catalysis and for P-site-mediated inhibition, these domains would be expected to be homologous. Sensitivity to P-site-mediated inhibition was also dependent on the structure of ATP, with the following IC50 values for 2'-d3'-AMP: ATP approximately 2'-dATP (approximately 1 microM); adenosine 5'-O-(3-thiotriphosphate) (approximately 5 microM); App(NH)p (approximately 30 microM); adenosine 5'-(beta gamma-methylene)triphosphate (approximately 300 microM). The differing effectiveness of the ATP analogs to support P-site inhibition was not due to their binding at the P-site. This effect of substrate was also observed with the platelet enzyme and was independent of the means by which the enzyme was activated, whether by Mn2+ or proteolytically by ninhibin/GTP gamma S, suggesting it is a general characteristic of P-site-mediated inhibition. The data suggest a structure for activated adenylyl cyclase such that one nucleotide binding domain, selective for ATP vis-à-vis other ATP analogs, allosterically modulates a proximate P-site domain.  相似文献   

5.
I R Beacham  D Haas    E Yagil 《Journal of bacteriology》1977,129(2):1034-1044
Mutants in which the expression of periplasmic enzymes by whole cells is reduced (termed "cryptic") are also found to show greatly reduced uptake of labeled adenosine 5'-monophosphate (5'-AMP), providing a rapid assay for crypticity. The crypticity of 3'- and 5'-nucleotidase has been examined as a function of substrate concentration. The Km for 3'- or 5'-AMP increases in the cryptic mutants when whole cells are used as the enzyme source. The Vmax is not altered. Electrophoretic analysis of protein prepared from cell envelopes showed that three cryptic mutants have a polypeptide absent from the outer membrane and a relatively high proportion of a polypeptide in the inner membrane. Analysis of the molar ratios of constituent sugars of the lipopolysaccharides showed no differences between three cryptic mutants and the parent strain. One cryptic mutant (3--41), however, has altered sensitivity to phage T4. By selection for phage resistance, derivatives of the cryptic mutants that are deoxycholate sensitive have been obtained. These mutants are no longer cryptic. We suggest that cryptic mutants have an altered outer membrane, with decreased permeability to 3'- and 5'-AMP, as a result of an altered polypeptide.  相似文献   

6.
Upon addition of NADP+, the rose bengal-sensitized photoinactivation of D-erythrulose reductase from beef liver is prevented to a remarkable extent. Adenosine 2',5'-diphosphate (2',5'-ADP) also has a protective effect, but to a lesser extent. On the other hand, 2'-AMP markedly enhances the photoinactivation. Other nucleotides which have no 2'-phosphoryl group, such as NAD+, 3'-AMP, 5'-AMP, ADP, and NMN, are ineffective. Further, only 2'-AMP derivatives (NADP+, 2',5'-ADP, and 2'-AMP) among these nucleotides were found to be potent competitive inhibitors of the enzyme with small Ki's (6--13 muM). Photooxidation of some methionine residues in the enzyme is prevented by the addition of NADP+ and accelerated in the presence of 2'-AMP. Photooxidation products(s) of 2'-AMP derivatives have no effect upon the enzymatic activity. Although NADP+ and 2'-AMP induce detectable conformational changes of the enzyme, the changes are not characteristic to the compounds. Based on these observations, we present a possible action mechanism of 2'-AMP derivatives on the photoinactivation of D-erythrulose reductase.  相似文献   

7.
Enzymatic hydrolysis of the pyrophosphate bond of CDP-diglyceride (CDP-DG), previously shown to occur in bacteria, is demonstrable in mammalian tissues. Activity was enriched in a lysosomal fraction obtained from guinea pig cerebral cortex and was purified 92-fold relative to the homogenate by a combination of XM-300 ultrafiltration and DEAE-cellulose column chromatography. When incubated with CDP-dipalmitin, the purified enzyme produced stoichiometric amounts of CMP and phosphatidate. dCDP-DG served as a substrate, while ADP-DG was an inhibitor, as were 5'-AMP and 5'-dAMP. CDP-DG hydrolysis was not affected by the presence of excess amounts of CDP-choline, CDP-glycerol, sodium pyrophosphate, or cyclic 3',5'-AMP.  相似文献   

8.
2',5'-Dideoxy,3'-p-fluorosulfonylbenzoyl Adenosine (2',5'-dd3'-FSBA) was synthesized and found to be an agonist and affinity label for the "P"-site of adenylyl cyclase. This compound irreversibly inactivated both a crude detergent-dispersed adenylyl cyclase from rat brain and the partially purified enzyme from bovine brain. The irreversible inactivation by 100 to 200 microM 2',5'-dd3'-FSBA was blocked in a concentration-dependent manner by several established P-site inhibitors of adenylyl cyclase, 2',5'-dideoxyadenosine, 2'-d3'-AMP, adenosine, and 2'-deoxyadenosine, but not by inosine, N6-(phenylisopropyl)adenosine, adenine, 2'-d3':5'-cAMP, or 5'-AMP, agents known not to act at the P-site. Moreover, irreversible inactivation by 2',5'-dd3'-FSBA occurred in the presence of ATP at concentrations up to 3 mM, making it unlikely that inactivation was due to an effect on the enzyme's catalytic site. Adenylyl cyclase was also irreversibly inactivated by 5'-FSBA, although modestly (less than 20%) and apparently nonspecifically. Dithiothreitol protected the enzyme from irreversible inactivation by 2',5'-dd3'-FSBA, but reversible inhibition of the enzyme was still observed, although with reduced potency. When 2 mM dithiothreitol was added after a 30-min preincubation with 2',5'-dd3'-FSBA, the rat brain enzyme was partially (approximately 80%) reactivated. The data suggest that 2',5'-dd3'-FSBA may irreversibly inactivate adenylyl cyclase by reacting with a cysteinyl moiety in proximity to the P-site domain of the enzyme. These data together with results of studies of P-site inhibition kinetics published elsewhere (Johnson, R. A., and Shoshani, I. (1990) J. Biol. Chem. 265, 11595-11600) strongly suggest that the P-site and catalytic site are distinct domains on the enzyme. 2',5'-dd3'-FSBA, and especially its radiolabeled analog, should prove to be a useful probe for structural studies of adenylyl cyclase, particularly with regard to the P-site.  相似文献   

9.
In order to study the structure-function relationship of an RNase T2 family enzyme, RNase Rh, from Rhizopus niveus, we investigated the roles of three histidine residues by means of site-specific mutagenesis. One of the three histidine residues of RNase RNAP Rh produced in Saccharomyces cerevisiae by recombinant DNA technology was substituted to a phenylalanine or alanine residue. A Phe or Ala mutant enzyme at His46 or His109 showed less than 0.03%, but a mutant enzyme at His104 showed 0.54% of the enzymatic activity of the wild-type enzyme with RNA as a substrate. Similar results were obtained, when ApU was used as a substrate. The binding constant of a Phe mutant enzyme at His46 or His109 towards 2'-AMP decreased twofold, but that at His104 decreased more markedly. Therefore, we assumed that these three histidine residues are components of the active site of RNase Rh, that His104 contributes to some extent to the binding and less to the catalysis, and that the other two histidine residues and one carboxyl group not yet identified are probably involved in the catalysis. We assigned the C-2 proton resonances of His46, His104, and His109 by comparison of the 1H-NMR spectra of the three mutant enzymes containing Phe in place of His with that of the native enzyme, and also determined the individual pKa values for His46 and His104 to be 6.70 and 5.94. His109 was not titrated in a regular way, but the apparent pKa value was estimated to be around 6.3. The fact that addition of 2'-AMP caused a greater effect on the chemical shift of His104 in the 1NMR spectra as compared with those of the other histidine residues, may support the idea described above on the role of His104.  相似文献   

10.
1. Pig heart lactate dehydrogenase is inhibited by addition of one equivalent of diethyl pyrocarbonate. The inhibition is due to the acylation of a unique histidine residue which is 10-fold more reactive than free histidine. No other amino acid side chains are modified. 2. The carbethoxyhistidine residue slowly decomposes and the enzyme activity reappears. 3. The essential histidine residue is only slightly protected by the presence of NADH but is completely protected when substrate and substrate analogues bind to the enzyme-NADH complex. The protection is interpreted in terms of a model in which substrates can only bind to the enzyme in which the histidine residue is protonated and is thus not available for reaction with the acylating agent. 4. The apparent pK(a) of the histidine residue in the apoenzyme is 6.8+/-0.2. In the enzyme-NADH complex it is 6.7+/-0.2. 5. Acylated enzyme binds NADH with unchanged affinity. The enzyme is inhibited because substrates and substrate analogues cannot bind at the acylated histidine residue in the enzyme-NADH complex.  相似文献   

11.
The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.  相似文献   

12.
Phosphodiesterase I [EC 3.1.4.1] was purified from normal human urine in a highly purified state free from phosphodiesterase II, RNase, DNase I, DNase II, and phosphatase by column chromatographies of DEAE-Toyopearl, butyl-Toyopearl, Affi-Gel blue, and Sephadex G-150. The molecular weight of the enzyme was 1.9 x 10(5) and the pH optimum around 9.0 with p-nitrophenyl deoxythymidine 5'-phosphate as the substrate. The enzyme hydrolyzed the 3'-5' linkage of various dinucleoside monophosphates at approximately the same rate and the phosphodiester bonds of cyclic 3',5'-mononucleotides to produce mononucleoside 5'-phosphate. The enzyme also hydrolyzed ADP to 5'-AMP and Pi, ATP to 5'-AMP and PPi, and NAD+ to 5'-AMP and NMN. The enzyme activity was abolished by removal of metal ions with EDTA, and the metal-free enzyme was reactivated on the addition of Zn2+. The enzyme activity was also abolished by some reducing agents and the inhibition was reversed by Zn2+. The metal-free enzyme was less stable than the native enzyme, and Zn2+ and Co2+ restored the stability of the metal-free enzyme to the level of the native enzyme. The enzyme degraded oligonucleotides and high molecular nucleotides stepwise from the 3'-termini to give 5'-mononucleotides. The enzyme hydrolyzed single-stranded DNA more preferentially than double-stranded DNA. The enzyme also nicked superhelical covalently closed circular phi X174 DNA to yield first open circular DNA and then linear DNA.  相似文献   

13.
Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media.  相似文献   

14.
Using incident light energy of about 76 mW.cm-2 in a dye-sensitized photooxidation reaction, we have investigated the possible involvement of one or both of the histidine residues in the catalytic activity of adenylate kinase (ATP:AMP phosphotransferase) of Mycobacterium marinum. We have done this by investigating the kinetics of photochemical inactivation of the enzyme. At pH 7.4, the kinetics of photoinactivation are biphasic with two different pseudo-first-order rate constants. Adenosine 5'-pentaphospho 5'-adenosine (Ap5A), ATP and, to some extent, AMP, all gave protection to the enzyme from inactivation. Amino-acid analysis of the photoinactivated enzyme indicated the loss of the two histidine residues. This, and the fact that photoinactivation occurred faster at alkaline compared to acidic pH, indicated the involvement of the histidine residues in the catalytic activity. A mathematical model is developed which assumes that both histidine residues are required for maximal catalytic activity: one is located peripherally, is exposed, and therefore is readily photooxidized (pseudo-first-order rate constant, k1 = 1.3.10(-2)s-1), while the other is located at the active site, involved in substrate-binding and is shielded (pseudo-first-order rate constant, k2 = 2.9.10(-4)s-1). However, this shielded histidine could be exposed and made more accessible to photooxidation either by raising the pH above 10, or alternatively, by the addition of 8 M acetamide (or 6 M guanidine). Under these conditions, which apparently cause unfolding of the protein molecule, the kinetics of photoinactivation change from biphasic to monophasic, suggesting that both histidine residues are equally exposed and are photooxidized at the same rate. Unlike the enzyme from M. marinum, adenylate kinase from bovine heart mitochondria shows monophasic kinetics of photoinactivation at pH 7.4, suggesting that only one of the six histidine residues is essential for catalytic activity, or if more than one, then they all must be equally exposed. Further, ATP, AMP or Ap5A did not provide protection against photoinactivation, suggesting that the histidine residue(s) involved in the catalytic activity must remain exposed after the substrates bind at the active site of the mitochondrial enzyme.  相似文献   

15.
Inhibition of adenylyl cyclases from Bacillus anthrasis and Bordetella pertussis by polyadenylate and by the most potent "P"-site agonists was investigated. These bacterial adenylyl cyclases differed in their sensitivity to inhibition by nominal "P"-site agents and in the effect of divalent cations on this inhibition. The enzyme from Bordetella pertussis was relatively insensitive to inhibition by "P"-site agonists, exhibiting a rank order of potency of 2'd3'AMP greater than 3'-AMP greater than 2',5'-ddAdo approximately Ado approximately 2'-dAdo, with IC50 values for 2'd3'AMP and 3'-AMP of 1-3 mM. Inhibition by 2'd3'AMP, however, was not affected by divalent cation, making it distinct from "P"-site-mediated inhibition of most mammalian adenylyl cyclases. The sensitivity to these nucleosides was comparable with potency for inhibition of bovine sperm adenylyl cyclase but was 3 orders of magnitude less potent than for activated enzyme from bovine or rat brain. The Bordetella pertussis enzyme was similarly insensitive to inhibition by polyadenylate, with 16 microM inhibiting less than 20%. By comparison, Bacillus anthrasis adenylyl cyclase was more potently inhibited by 2'd3'AMP (IC50 approximately 85 microM) but not by the other nucleosides (less than 15% inhibition at 1 mM), and inhibition by 2'd3'AMP was optimally enhanced by 5-10 mM Mg2+ or Mn2+, as is typical for inhibition by "P"-site agonists. The Bacillus anthrasis enzyme was potently inhibited by polyadenylate (IC50 approximately 0.3 microM), comparable to inhibition of brain adenylyl cyclases. Sensitivity of Bacillus anthrasis adenylyl cyclase to poly(A) was diminished somewhat by Ca2+/calmodulin (to IC50 approximately 1 microM) although Ca2+/calmodulin was without effect on inhibition by 2'd3'AMP. In contrast to inhibition of mammalian adenylyl cyclases via the "P"-site, inhibition of both bacterial adenylyl cyclases by 2'd3'AMP was competitive with respect to substrate MgATP. The data indicate basic differences in susceptibilities of these bacterial adenylyl cyclases to inhibition by poly(A), by adenosine analogs, and the effects of divalent cations. Although the potency of 2'd3'AMP and the metal-dependent nature of inhibition of Bacillus anthrasis adenylyl cyclase shared characteristics of "P"-site-mediated inhibition, the fact that inhibition of both bacterial adenylyl cyclases was competitive with respect to substrate strongly suggests that this inhibition was at the catalytic site and that these bacterial enzymes do not contain a distinct "P"-site.  相似文献   

16.
A procedure is presented for the rapid purification of a 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from potato tubers, involving ammonium sulphate fractionation and chromatography on phosphocellulose, DEAE-cellulose and Sephadex G-75. Application of this procedure results in a 6000-fold purification of the 5'-nucleotidase and the final preparations are virtually homogeneous, yielding only one protein band on electrophorsis in polyacrylamide gels in non-dissociating or dissociating conditions. The 5'-nucleotidase has a molecular weight of 50 000 from gel filtration experiments. Sodium dodecylsulphate-polyacrylamide gel electrophoresis of the purified 5'-nucleotidase reveals one major band of molecular weight 25 000. The 5'-nucleotidase is competitively inhibited by cyclic nucleotides, having micromolar Ki values for cyclic AMP and cyclic GMP at pH 5.0 and pH 8.0. The enzyme has a pH optimum of 5.0 with 5'-GMP as substrate. While 5'-AMP and 3'-AMP are hydrolyzed at comparable rates at pH 5.0, at pH 8.0 the rate of hydrolysis of 3'-AMP is only 4% of that with 5'-AMP. ADP, ATP and 2'-AMP are very poor substrates for the enzyme. The nucleotidase has micromolar Km values for nucleoside 5'-monophosphates other than 5'-NMP. A wide variety of divalent cations activate the 5'-nucleotidase.  相似文献   

17.
P-site inhibitors are adenosine and adenine nucleotide analogues that inhibit adenylyl cyclase, the effector enzyme that catalyzes the synthesis of cyclic AMP from ATP. Some of these inhibitors may represent physiological regulators of adenylyl cyclase, and the most potent may ultimately serve as useful therapeutic agents. Described here are crystal structures of the catalytic core of adenylyl cyclase complexed with two such P-site inhibitors, 2'-deoxyadenosine 3'-monophosphate (2'-d-3'-AMP) and 2',5'-dideoxyadenosine 3'-triphosphate (2',5'-dd-3'-ATP). Both inhibitors bind in the active site yet exhibit non- or uncompetitive patterns of inhibition. While most P-site inhibitors require pyrophosphate (PP(i)) as a coinhibitor, 2',5'-dd-3'-ATP is a potent inhibitor by itself. The crystal structure reveals that this inhibitor exhibits two binding modes: one with the nucleoside moiety bound to the nucleoside binding pocket of the enzyme and the other with the beta and gamma phosphates bound to the pyrophosphate site of the 2'-d-3'-AMP.PP(i) complex. A single metal binding site is observed in the complex with 2'-d-3'-AMP, whereas two are observed in the complex with 2', 5'-dd-3'-ATP. Even though P-site inhibitors are typically 10 times more potent in the presence of Mn(2+), the electron density maps reveal no inherent preference of either metal site for Mn(2+) over Mg(2+). 2',5'-dd-3'-ATP binds to the catalytic core of adenylyl cyclase with a K(d) of 2.4 microM in the presence of Mg(2+) and 0.2 microM in the presence of Mn(2+). Pyrophosphate does not compete with 2',5'-dd-3'-ATP and enhances inhibition.  相似文献   

18.
We previously proposed that the first enzyme for histidine biosynthesis in Salmonellatyphimurium plays a role in regulating expression of the histidine operon and that in order to play this role the enzyme must form a complex with histidyl-tRNA. Among the many observations that led to these conclusions were 1) that regulation of the histidine operon is defective in strains carrying a mutation in the gene for the first enzyme that renders the enzyme resistant to inhibition by histidine; and 2) that the enzyme purified from the wild type strain interacts specifically, and with high affinity, with histidyl-tRNA. The present study was carried out to test the prediction that the enzyme purified from the mutant strain described above would display a defect in its interaction with histidyl-tRNA. This prediction was fulfilled by the finding that purified histidine-insensitive enzyme does not bind histidyl-tRNA. Our results therefore suggest that the capacity of the enzyme to bind histidyl-tRNA invitro is a reflection of its regulatory function invivo.  相似文献   

19.
J L Gabriel  G W Plaut 《Biochemistry》1990,29(14):3528-3535
The specificity of yeast NAD-specific isocitrate dehydrogenase for the structures of the allosteric effector 5'-AMP was examined with analogues modified in the purine ring, pentosyl group, and 5'-phosphate group. An unsubstituted 6-amino group was essential for activation as was the phosphoryl group at the 5'-position. Activity was retained when an oxygen function of the 5'-phosphoryl was replaced by sulfur (Murry & Atkinson, 1968) or by nitrogen (phosphoramidates). 2-NH2-AMP, 2-azido-AMP, and 8-NH2-AMP were active; 8-azido-AMP and 8-Br-AMP were inactive. The configuration or nature of substituents about carbons 2' and 3' of the pentosyl portion of AMP was not critical for allosteric activation since AMP analogues containing, e.g., 2',3'-dideoxyribose or the bulky 2',3'-O-(2,4,6-trinitrocyclo-hexadienylidene) substituent (TNP-AMP) were active. TNP-AMP was bound to the enzyme with fluorescence enhancement and had an S0.5 for activation similar to the S0.5 for AMP. Positive effector activity was decreased when the pentosyl moiety of 5'-AMP was replaced by the six-membered nitrogen-containing morpholine group, indicating that the pentosyl group may be critical as a spacer for the proper geometry of binding to enzyme at the 6-amino and 5'-phosphoryl groups of 5'-AMP. A comparison of molecular models of 5'-AMP with 8,5'-cycloAMP suggests that the species of 5'-AMP required for binding to the enzyme contains the purine and ribose moieties in an anti conformation and positioning of the 5'-phosphate trans with respect to carbon 4'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A specific and sensitive radioimmunoassay for ADP-ribose has been developed on the basis of the selective conversion of ADP-ribose to 5'-AMP by alkaline treatment. Antibodies highly specific against 5'-AMP allowed quantification of ADP-ribose converted to 5'-AMP in the range of 1-40 pmol, and in the presence of large quantities of nucleic acids or 3'-AMP. Poly(ADP-ribose) could also be determined when degraded to ADP-ribose by poly(ADP-ribose) glycohydrolase. Determination of the chain length of purified polymer was possible by a parallel determination of ADP-ribose residues after glycohydrolase treatment and of 5'-AMP from the non-reducing end obtained by phosphodiesterase catalyzed hydrolysis. The high specificities of the alkaline conversion of ADP-ribose to 5'-AMP and of the radioimmunoassay for 5'-AMP allowed quantification of protein-bound ADP-ribose residues in crude tissue extracts as verified by comparison with chromatographically purified samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号