首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FemA of Staphylococcus aureus: Isolation and immunodetection   总被引:1,自引:0,他引:1  
Abstract FemA, a cytoplasmic protein necessary for the expression of methicillin resistance in Staphylococcus aureus and also involved in the biosynthesis of staphylococcal cell walls, was detected and quantified in several S. aureus strains under different growth conditions by Western immunoblot. Two types of antigens were used for the production of polyclonal antibodies against FemA: (i) a synthetic peptide comprising 14 amino acids of its C-terminal sequence; and (ii) FemA isolated by preparative gel electrophoresis and electroelution from an overproducing staphylococcal strain. Immunodetection revealed that all investigated strains, either methicillin-resistant or susceptible, expressed FemA during the exponential growth phase in varying amounts. In the stationary phase, the FemA content was diminished. Strains in which femA was inactivated by insertion of Tn557 into the control region of the fem AB operon still expressed about 10% of the protein compared to their parent strains. Tn55 I insertion in the middle of the fem B gene did not affect the FemA expression. In 40 methicillin-susceptible and 6 resistant clinical isolates of S. aureus , the FemA content or its affinity to the antibodies was reduced compared to laboratory parent strains. In susceptible strains, an additional protein of higher molecular weight, present in large quantities, was also able to bind the FemA antibodies. Such a protein was also present in methicillin-resistant isolates, although it was not as pronounced as in the susceptible strains.  相似文献   

2.
The X-ray crystal structure of the substrate free form of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB) has been solved to 2.3 A resolution with an R-factor of 20.3% and a free R-factor of 22.3%. While the overall fold of the S. aureus enzyme is similar to that of the homologous Escherichia coli MurB X-ray crystal structure, notable distinctions between the S. aureus and E. coli MurB protein structures occur in residues involved in substrate binding. Analysis of available MurB sequences from other bacteria suggest that the S. aureus MurB structure is representative of a distinct structural class of UDP-N-acetylenolpyruvylglucosamine reductases including Bacillus subtilis and Helicobacter pylori that are characterized by a modified mechanism for substrate binding.  相似文献   

3.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a member of the family of acyl-condensing enzymes, catalyzes the first committed step in the mevalonate pathway and is a potential target for novel antibiotics and cholesterol-lowering agents. The Staphylococcus aureus mvaS gene product (43.2 kDa) was overexpressed in Escherichia coli, purified to homogeneity, and shown biochemically to be an HMG-CoA synthase. The crystal structure of the full-length enzyme was determined at 2.0-A resolution, representing the first structure of an HMG-CoA synthase from any organism. HMG-CoA synthase forms a homodimer. The monomer, however, contains an important core structure of two similar alpha/beta motifs, a fold that is completely conserved among acyl-condensing enzymes. This common fold provides a scaffold for a catalytic triad made up of Cys, His, and Asn required by these enzymes. In addition, a crystal structure of HMG-CoA synthase with acetoacetyl-CoA was determined at 2.5-A resolution. Together, these structures provide the structural basis for an understanding of the mechanism of HMG-CoA synthase.  相似文献   

4.
5.
The preparation, crystallization and low-resolution structure determination of beta-lactamase (EC 3.5.2.6, 'penicillinase') from Staphylococcus aureus is described. The enzyme crystallizes in space group I222 with 1 molecule per asymmetric unit and cell dimensions a = 5.45(1), b = 9.39(1) and c = 13.87(2) nm. The structure was determined at 0.5 nm resolution by using phases calculated from (NH4)2Pt(CN)4 and KAu(CN)2 derivatives. The mean figure of merit mean value of m, for the 1106 reflexions used was 0.70. Difference Fourier syntheses for data collected from crystals soaked in platinum D-methionine and in 6-(4-hydroxy-3,5-di-iodobenzamido)penicilloic acid revealed the likely position of the active site of the enzyme.  相似文献   

6.
The crystal structure of a class A beta-lactamase from Staphylococcus aureus PC1 has been refined at 2.0 A resolution. The resulting crystallographic R-factor (R = sigma h parallel Fo[-]Fc parallel/sigma h[Fo], where [Fo] and [Fc] are the observed and calculated structure factor amplitudes, respectively), is 0.163 for the 17,547 reflections with I greater than or equal to 2 sigma (I) within the 8.0 A to 2.0 A resolution range. The molecule consists of two closely associated domains. One domain is formed by a five-stranded antiparallel beta-sheet with three helices packing against a face of the sheet. The second domain is formed mostly by helices that pack against the second face of the sheet. The active site is located in the interface between the two domains, and many of the residues that form it are conserved in all known sequences of class A beta-lactamases. Similar to the serine proteases, an oxyanion hole is implicated in catalysis. It is formed by two main-chain nitrogen atoms, that of the catalytic seryl residue, Ser70, and that of Gln237 on an edge beta-strand of the major beta-sheet. Ser70 is interacting with another conserved seryl residue, Ser130, located between the two ammonium groups of the functionally important lysine residues, Lys73 and Lys234. Such intricate interactions point to a possible catalytic role for this second seryl residue. Another key catalytic residue is Glu166. There are several unusual structural features associated with the active site. (1) A cis peptide bond has been identified between the catalytic Glu166 and Ile167. (2) Ala69 and Leu220 have strained phi, psi dihedral angles making close contacts that restrict the conformation of the active site beta-strand involved in the formation of the oxyanion hole. (3) A buried aspartate residue, the conserved Asp233, is located next to the active site Lys234. It is interacting with another buried aspartyl residue, Asp246. An internal solvent molecule is also involved, but the rest of its interactions with the protein indicate it is not a cation. (4) Another conserved aspartyl residue that is desolvated is Asp131, adjacent to Ser130. Its charge is stabilized by interactions with four main-chain nitrogen atoms. (5) An internal cavity underneath the active site depression is filled with six solvent molecules. This, and an adjacent cavity occupied by three solvent molecules partially separate the omega-loop associated with the active site from the rest of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
The C3stau2 exoenzyme from Staphylococcus aureus is a C3-like ADP-ribosyltransferase that ADP-ribosylates not only RhoA-C but also RhoE/Rnd3. In this study we have crystallized and determined the structure of C3stau2 in both its native form and in complex with NAD at 1.68- and 2.02-A resolutions, respectively. The topology of C3stau2 is similar to that of C3bot1 from Clostridium botulinum (with which it shares 35% amino acid sequence identity) with the addition of two extra helices after strand beta1. The native structure also features a novel orientation of the catalytic ARTT loop, which approximates the conformation seen for the "NAD bound" form of C3bot1. C3stau2 orients NAD similarly to C3bot1, and on binding NAD, C3stau2 undergoes a clasping motion and a rearrangement of the phosphate-nicotinamide binding loop, enclosing the NAD in the binding site. Comparison of these structures with those of C3bot1 and related toxins reveals a degree of divergence in the interactions with the adenine moiety among the ADP-ribosylating toxins that contrasts with the more conserved interactions with the nicotinamide. Comparison with C3bot1 gives some insight into the different protein substrate specificities of these enzymes.  相似文献   

10.
Methionyl aminopeptidases (MetAPs) represent a unique class of protease that are responsible for removing the N-terminal methionine residue from proteins and peptides. There are two major classes of MetAPs (type I and type II) described and each class can be subdivided into two subclasses. Eukaryotes contain both the type I and type II MetAPs, whereas prokaryotes possess only the type I enzyme. Due to the physiological importance of these enzymes there is considerable interest in inhibitors to be used as antiangiogenic and antimicrobial agents. Here, we describe the 1.15A crystal structure of the Staphylococcus aureus MetAP-I as an apo-enzyme and its complexes with various 1,2,4-triazole-based derivatives at high-resolution. The protein has a typical "pita-bread" fold as observed for the other MetAP structures. The inhibitors bind in the active site with the N1 and N2 atoms of the triazole moiety complexing two divalent ions. The 1,2,4-triazols represent a novel class of potent non-peptidic inhibitors for the MetAP-Is.  相似文献   

11.
The structure of Staphylococcus aureus alpha-toxin-induced ionic channel   总被引:1,自引:0,他引:1  
Polyethylene glycols (PEG) with molecular weight less than or equal to 3000 were shown to effectively protect human erythrocytes from osmotic lysis induced by alpha-staphylotoxin (ST). PEG with MW less than 3000 do not change the conductivity of ion channels induced by ST in bilayer lipid membranes (BLM). Changing the bilayer from a pure phosphatidylcholine (PC) to a negatively charged phosphatidylserine (PS) film results in an asymmetry of the current-voltage characteristics. This is evidenced by the asymmetrical position of the ST-channel pore in bilayer membranes. The results obtained allow to conclude that the ST-channel is an interprotein pore filled with water (with an inner diameter of 2.5-3 nm and a length of approximately 10 nm). It is composed of six molecules of alpha-toxin from Staphylococcus aureus. The ST-channel incorporates into a membrane with only one mouth in contact with the polar lipid heads and the other one protruding 4.5-5 nm from the bilayer plane in water solution.  相似文献   

12.
The recently described scaffold model of murein architecture depicts the gram-negative bacterial cell wall as a gel-like matrix composed of cross-linked glycan strands oriented perpendicularly to the plasma membrane while peptide bridges adopt a parallel orientation (B. A. Dmitriev, F. V. Toukach, K. J. Schaper, O. Holst, E. T. Rietschel, and S. Ehlers, J. Bacteriol. 185:3458-3468, 2003). Based on the scaffold model, we now present computer simulation studies on the peptidoglycan arrangement of the gram-positive organism Staphylococcus aureus, which show that the orientation of peptide bridges is critical for the highly cross-linked murein architecture of this microorganism. According to the proposed refined model, staphylococcal murein is composed of glycan and oligopeptide chains, both running in a plane that is perpendicular to the plasma membrane, with oligopeptide chains adopting a zigzag conformation and zippering adjacent glycan strands along their lengths. In contrast to previous models of murein in gram-positive bacteria, this model reflects the high degree of cross-linking that is the hallmark of the staphylococcal cell wall and is compatible with distinguishing features of S. aureus cytokinesis such as the triple consecutive alteration of the division plane orientation and the strictly centripetal mode of septum closure.  相似文献   

13.
14.
15.
Interaction of the pore-forming protein alpha-toxin from Staphylococcus aureus with lipid components from platelet membranes induces crystal formation of the toxin oligomers. Structure analysis of crystalline areas in either sodium phosphotungstic acid or a sodium phosphotungstic acid/glucose mixture has been performed with electron microscopy and image processing. Ordered domains extending up to a few micrometers were observed, particularly after application of alpha-toxin to pre-formed lipid layers. The crystals, showing tetragonal symmetry, formed either separate two-dimensional sheets or three-dimensional piles of layers. The corresponding unit cell parameter of the single layer was a = b = 109.4 A (standard deviation 2.1 A, n = 21). Incubation of the toxin with intact membranes or extracted lipids as well as application of the lipid layer technique resulted in congruous crystalline properties. The projected averaged alpha-toxin oligomer shows cyclic symmetry with a stain-filled space in the centre. The bulk of the three-dimensional model consists of four asymmetric protein units forming a ring. In addition, a small domain covers the central cavity at the face of the protein opposite to the underlying lipid. The conditions under which the tetragonal arrays are formed on the lipid layers suggest that the alpha-toxin molecule is in a conformation binding to a hydrophobic surface rather than fully inserted into a lipid bilayer.  相似文献   

16.
Trypsin treatment of staphylococcal alpha-toxin cleaves the molecule into two roughly equally sized parts, which results in inactivation of the toxin. Tetragonal arrays of oligomers, closely resembling the native ones, can however be formed on lipid layers. From tilted views of negatively stained crystals a 3D structure to 23 A resolution has been determined by electron microscopy and image processing. On comparison with the 3D structure of the native alpha-toxin (Olofsson et al., J. Mol. Biol. 214, 299-306, 1990) the subdomains are more separated, confirming the differences found when comparing the projection maps (Olofsson et al., J. Struct. Biol. 106, 199-204, 1991). The tryptic cleavage takes place in a postulated hinge region. The results are consistent with the hypothesis that the conformational change required for inducing the membrane permeabilizing property takes place in this region. Furthermore, we present a refined projection map at approximately 10 A resolution based on the analysis of a large number of crystals using unbending methods.  相似文献   

17.
Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.  相似文献   

18.
19.
20.
The nucleotide sequence of the PSE-4 beta-lactamase gene from Pseudomonas aeruginosa strain Dalgleish has been determined. The structural gene encodes a polypeptide product of 252 amino acids with an estimated molecular mass of 29,246 Da for the mature form of the protein. The PSE-4 gene has limited homology with other beta-lactamases at the DNA level. An alignment of all known class A beta-lactamases permitted as to identify specific residues important for enzyme structure and function. To confirm observations based on the linear sequences, we designed a new molecular model for PSE-4 beta-lactamase based on x-ray data from the Staphylococcus aureus PC1 beta-lactamase at 2.0-A resolution. The structural similarities between PSE-4 and class A beta-lactamases are more extensive than indicated by earlier biochemical studies. The combined structural and sequence information now available for a series of beta-lactamases identifies conserved residues in these molecules, giving insight of their divergence and ancestry. Analysis of the PSE-4 flanking DNA sequences revealed an integration site common to antibiotic resistance genes inserted into transposons of the Tn21 family with the target integration sequence AAGTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号