首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of apolipoprotein A-II (apoA-II) on the structure and stability of HDL has been investigated in reconstituted HDL particles. Purified human apoA-II was incorporated into sonicated, spherical LpA-I particles containing apoA-I, phospholipids, and various amounts of triacylglycerol (TG), diacylglycerol (DG), and/or free cholesterol. Although the addition of PC to apoA-I reduces the thermodynamic stability (free energy of denaturation) of its alpha-helices, PC has the opposite effect on apoA-II and significantly increases its helical stability. Similarly, substitution of apoA-I with various amounts of apoA-II significantly increases the thermodynamic stability of the particle alpha-helical structure. ApoA-II also increases the size and net negative charge of the lipoprotein particles. ApoA-II directly affects apoA-I conformation and increases the immunoreactivity of epitopes in the N and C termini of apoA-I but decreases the exposure of central domains in the molecule (residues 98-186). ApoA-II appears to increase HL association with HDL and inhibits lipid hydrolysis. ApoA-II mildly inhibits PC hydrolysis in TG-enriched particles but significantly inhibits DG hydrolysis in DG-rich LpA-I. In addition, apoA-II enhances the ability of reconstituted LpA-I particles to inhibit VLDL-TG hydrolysis by HL. Therefore, apoA-II affects both the structure and the dynamic behavior of HDL particles and selectively modifies lipid metabolism.  相似文献   

2.
While low apolipoprotein A-I (apoA-I) levels are primarily associated with increased high density lipoprotein (HDL) fractional catabolic rate (FCR), the factors that regulate the clearance of HDL from the plasma are unclear. In this study, the effect of lipid composition of reconstituted HDL particles (LpA-I) on their rate of clearance from rabbit plasma has been investigated. Sonicated LpA-I containing 1 to 2 molecules of purified human apoA-I and 5 to 120 molecules of palmitoyl-oleoyl phosphatidylcholine (POPC) exhibit similar charge and plasma FCR to that for lipid free apoA-I, 2.8 pools/day. Inclusion of 1 molecule of apoA-II to an LpA-I complex increases the FCR to 3.5 pools/day, a value similar to that observed for exchanged-labeled HDL3. In contrast, addition of 40 molecules of triglyceride, diglyceride, or cholesteryl ester to a sonicated LpA-I containing 120 moles of POPC and 2 molecules of apoA-I increases the negative charge of the particle and reduces the FCR to 1.8 pools/day. Discoidal LpA-I are the most positively charged lipoprotein particles and also have the fastest clearance rates, 4.5 pools/day. Immunochemical characterization of the different LpA-I particles shows that the exposure of an epitope at residues 98 to 121 of the apoA-I molecule is associated with an increased negative particle charge and a slower clearance from the plasma.We conclude that the charge and conformation of apoA-I are sensitive to the lipid composition of LpA-I and play a central role in regulating the clearance of these lipoproteins from plasma. conformation regulate the clearance of reconstituted high density lipoprotein in vivo.  相似文献   

3.
A unique class of lipid-poor high-density lipoprotein, pre-beta1 HDL, has been identified and shown to have distinct functional characteristics associated with intravascular cholesterol transport. In this study we have characterized the structure/function properties of poorly lipidated HDL particles and the factors that mediate their conversion into multimolecular lipoprotein particles. Studies were undertaken with homogeneous recombinant HDL particles (LpA-I) containing apolipoprotein (apo) A-I and various amounts of palmitoyloleoylphosphatidylcholine (PC) and cholesterol. Complexation of apoA-I with small amounts of PC and cholesterol results in the formation of discrete lipoprotein structures that have a hydrated diameter of about 6 nm but contain only one molecule of apoA-I (Lp1A-I). While the molecular charge and alpha-helix content of apoA-I are unaffected by lipidation, the thermodynamic stability of the protein is reduced significantly (from 2.4 to 0.9 kcal/mol of apoA-I). Evaluation of apoA-I conformation by competitive radioimmunoassay with monoclonal antibodies shows that addition of small amounts of PC and cholesterol to apoA-I significantly increases the immunoreactivity of a number of domains over the entire molecule. Increasing the ratio of PC:apoA-I to 10:1 in the Lp1A-I complex is associated with increases in the alpha-helix content and stability of apoA-I. However, incorporation of 10-15 mol of PC destabilizes the Lp1A-I complex and promotes the formation of more thermodynamically stable (1.8 kcal/mol of apoA-I) bimolecular structures (Lp2A-I) that are approximately 8 nm in diameter. The formation of an Lp2A-I particle is associated with an increased immunoreactivity of most of the epitopes studied, with the exception of one central domain (residues 98-121), which becomes significantly less exposed. This structural change parallels a significant increase in the net negative charge on the complex. Characterization of the ability of these lipoproteins to act as substrates for lecithin:cholesterol acyltransferase (LCAT) shows that unstable Lp1A-I complexes stimulate a higher rate of cholesterol esterification by LCAT than the small but more stable Lp2A-I particles (Vmax values are 5.8 and 0.3 nmol of free cholesterol esterified/h, respectively). The ability of LCAT to interact with lipid-poor apoA-I suggests that LCAT does not need to bind to the lipid interface on an HDL particle but that LCAT may directly interact with apoA-I. The data suggests that lipid-poor HDL particles may be metabolically reactive particles because they are thermodynamically unstable.  相似文献   

4.
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport.  相似文献   

5.
Two species of lipoprotein containing apoA-I, one containing only apoA-I (LpA-I), and the other containing apoA-I and apoA-II (LpA-I/A-II), were tested for their effects on macrophage foam cells. Rat macrophages were converted to foam cells by incubation with radiolabeled acetylated LDL. Incubation with LpA-I or LpA-I/A-II decreased the cellular cholesteryl esters (CE) mass. However, the free cholesterol (FC) mass was only reduced by LpA-I. All the radioactivity excreted into the medium was associated with LpA-I or LpA-I/A-II; 39% of the excreted radioactivity was esterified in LpA-I and 10% in LpA-I/A-II. Upon complete inactivation of lecithin: cholesterol acyltransferase (LCAT) activity with dithiobisnitrobenzoic acid, the cholesterol reducing capacity of LpA-I was weakened significantly. However, the CE mass reducing capacity of LpA-I/A-II was not affected. When LpA-I and LpA-I/A-II were combined, the cholesterol reducing capacity of the mixture was similar to that of LpA-I alone. However, LpA-I re-isolated from the medium showed a lower esterification rate than did the re-isolated LpA-I/A-II, thereby indicating that the cholesterol esterified in LpA-I was transferred to LpA-I/A-II. These results suggest that (i) the function of LpA-I is closely linked to the LCAT activity while that of LpA-I/A-II is not, and (ii) LpA-I in concert with LpA-I/A-II induces a series of extracellular events; LCAT-mediated esterification of excreted FC by LpA-I and a subsequent CE transfer to LpA-I/A-II. These mechanisms might be important for net cholesterol efflux from macrophage foam cells in physiological states.  相似文献   

6.
Two species of apoA-I-containing lipoproteins (A-ILp), lipoprotein containing apoA-I and apoA-II (LpA-I/A-II) and lipoprotein containing apoA-I but no apoA-II (LpA-I), have been isolated from 20 normolipidemic adults (10 males and 10 females) by immunoaffinity chromatography. We have characterized the lipid and apolipoprotein compositions in these lipoproteins, and found sex differences. In A-ILp, the levels of lipids, except triglyceride, and the level of apoE were significantly higher in females than in males. In LpA-I/A-II, sex differences were found only in the levels of apoA-I and apoE. In LpA-I, the levels of all lipids, except triglyceride, and the level of apoA-I were significantly higher in females than in males. Therefore, sex differences observed in A-ILp appear to be due primarily to the differences found in LpA-I. Of considerable significance is our finding that the ratio of cholesteryl ester to total cholesterol in LpA-I was significantly lower than that in LpA-I/A-II in both males and females. This might suggest that LpA-I could be a carrier of free cholesterol.  相似文献   

7.
We previously reported that human Niemann-Pick Disease type B (NPD-B) is associated with low HDL. In this study, we investigated the pathophysiology of this HDL deficiency by examining both HDL samples from NPD-B patients and nascent high density lipoprotein (LpA-I) generated by incubation of lipid-free apolipoprotein A-I (apoA-I) with NPD-B fibroblasts. Interestingly, both LpA-I and HDL isolated from patient plasma had a significant increase in sphingomyelin (SM) mass ( approximately 50-100%). Analysis of LCAT kinetics parameters (V(max) and K(m)) revealed that either LpA-I or plasma HDL from NPD-B, as well as reconstituted HDL enriched with SM, exhibited severely decreased LCAT-mediated cholesterol esterification. Importantly, we documented that SM enrichment of NPD-B LpA-I was not attributable to increased cellular mass transfer of SM or unesterified cholesterol to lipid-free apoA-I. Finally, we obtained evidence that the conditioned medium from HUVEC, THP-1, and normal fibroblasts, but not NPD-B fibroblasts, contained active secretory sphingomyelinase (S-SMase) that mediated the hydrolysis of [(3)H]SM-labeled LpA-I and HDL(3). Furthermore, expression of mutant SMase (DeltaR608) in CHO cells revealed that DeltaR608 was synthesized normally but had defective secretion and activity. Our data suggest that defective S-SMase in NPD leads to SM enrichment of HDL that impairs LCAT-mediated nascent HDL maturation and contributes to HDL deficiency. Thus, S-SMase and LCAT may act in concert and play a crucial role in the biogenesis and maturation of nascent HDL particles.  相似文献   

8.
It is expected that the attendant structural heterogeneity of human high-density lipoprotein (HDL) complexes is a determinant of its varied metabolic functions. To determine the structural heterogeneity of HDL, we determined major apolipoprotein stoichiometry profiles in human HDL. First, HDL was separated into two main populations, with and without apolipoprotein (apo) A-II, LpA-I and LpA-I/A-II, respectively. Each main population was further separated into six individual subfractions using size exclusion chromatography (SEC). Protein proximity profiles (PPPs) of major apolipoproteins in each individual subfraction was determined by optimally cross-linking apolipoproteins within individual particles with bis(sulfosuccinimidyl) suberate (BS(3)), a bifunctional cross-linker, followed by molecular mass determination by MALDI-MS. The PPPs of LpA-I subfractions indicated that the number of apoA-I molecules increased from two to three to four with an increase in the LpA-I particle size. On the other hand, the entire population of LpA-I/A-II demonstrated the presence of only two proximal apoA-I molecules per particle, while the number of apoA-II molecules varied from one dimeric apoA-II to two and then to three. For most of the PPPs described above, an additional population that contained a single molecule of apoC-III in addition to apoA-I and/or apoA-II was detected. Upon composition analyses of individual subpopulations, LpA-I/A-II exhibited comparable proportions for total protein (~58%), phospholipids (~21%), total cholesterol (~16%), triglycerides (~5%), and free cholesterol (~4%) across subfractions. LpA-I components, on the other hand, showed significant variability. This novel information about HDL subfractions will form a basis for an improved understanding of particle-specific functions of HDL.  相似文献   

9.
The oligomeric structure of ABCA1 transporter and its function related to the biogenesis of nascent apoA-I-containing particles (LpA-I) were investigated. Using n-dodecylmaltoside and perfluoro-octanoic acid combined with non-denaturing gel, the majority of ABCA1 was found as a tetramer in ABCA1-induced human fibroblasts. Furthermore, using chemical cross-linking and SDS-PAGE, ABCA1 dimers but not the tetramers were found covalently linked. Oligomeric ABCA1 was present in isolated plasma membranes as well as in intracellular compartments. Interestingly, apoA-I was found to be associated with both dimeric and tetrameric, but not monomeric, forms of ABCA1. Neither apoA-I nor lipid molecules did affect ABCA1 oligomerization. Immunoprecipitation analysis showed that oligomeric ABCA1 did not contain other associated proteins. We next investigated the relationship between the oligomeric ABCA1 complex and the structure of LpA-I. Lipid-free apoA-I incubated with normal cells generated LpA-I with diameters between 9.5 and 20 nm. Subsequent isolation of LpA-I followed by cross-linking revealed the presence of four and eight apoA-I molecules per particle, whereas apoA-I incubated with ABCA1 mutant (Q597R) cells was unable to form such particles and remained in the monomeric form. These results demonstrate that: 1) ABCA1 exists as an oligomeric complex; and 2) ABCA1 oligomerization was independent of apoA-I binding and lipid molecules. The findings that the majority of ABCA1 exists as a tetramer that binds apoA-I, together with the observation that LpA-I contains at least four molecules of apoA-I per particle, support the concept that the homotetrameric ABCA1 complex constitutes the minimum functional unit required for the biogenesis of high density lipoprotein particles.  相似文献   

10.
Recently identified epitopes in apoA-I define a distinct N-terminal region with a complex tertiary structure, characterized by multiple discontinuous epitopes. Other epitopes are constituted of short domains centered either on beta-turns or random coils or on the 22-mer amphipathic alpha-helices (Marcel, Y. L., Provost, P. R., Koa, H., Raffa?, E., Vu Dac, N., Fruchart, J.-C., and Rassart, E. (1991) J. Biol. Chem. 266, 3644-3653). The compared immunoreactivity of seven epitopes studies here in response first to delipidation of high density lipoprotein (HDL) apoA-I by detergents, and second to modifications of HDL lipid composition by phospholipase A2 or by enrichment in surface lipids demonstrates that apoA-I has a flexible conformation which is readily responsive to the nature and concentration of bound lipids and that the structure of lipid-free apoA-I is significantly different from that of HDL-bound apoA-I, possibly representing a condensed molecule with several masked domains. In HDL apoA-I, these epitopes define five distinct domains which are characterized by particular responses to lipid modifications. However, two domains, each starting at the N-terminal beta-turn of an amphipathic alpha-helical repeat (residues 99-121 and 186-209, respectively) have almost identical immunoreactivity whether after detergent treatment or after changes in cholesterol and phospholipid levels, a property which probably reflects the known periodicity of apoA-I structural 22-mers. The immunoreactivity of a discontinuous epitope, representative of the N-terminal domain, is inversely related to the concentration of phospholipids, a unique characteristic among the epitopes tested here which indicates that the complex N-terminal region interacts with phospholipids, either directly or indirectly. These studies demonstrate that the conformation of multiple domains of HDL apoA-I is dependent on lipid phase composition and differentially affected by cholesterol and phospholipids.  相似文献   

11.
The details of how high density lipoprotein (HDL) microstructure affects the conformation and net charge of apolipoprotein (apo) A-I in various classes of HDL particles have been investigated in homogeneous recombinant HDL (rHDL) particles containing apoA-I, palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate. Isothermal denaturation with guanidine HCl was used to monitor alpha-helix structural stability, whereas electrokinetic analyses and circular dichroism were used to determine particle charge and apoA-I secondary structure, respectively. Electrokinetic analyses show that at pH 8.6 apoA-I has a net negative charge on discoidal (POPC.apoA-I) particles (-5.2 electronic units/mol of apoA-I) which is significantly greater than that of apoA-I either free in solution or on spherical (POPC.cholesteryl oleate.apoA-I) rHDL (approximately -3.5 electronic units). Raising the POPC content (32-128 mol/ml of apoA-I) of discoidal particles 1) increases the particle major diameter from 9.3 to 12.1 nm, 2) increases the alpha-helix content from 62 to 77%, and 3) stabilizes the helical segments by increasing the free energy of unfolding (delta GD degree) from 1.4 to 3.0 kcal/mol of apoA-I. Raising the POPC content (28-58 mol/mol of apoA-I) of spherical particles 1) increases the particle diameter from 7.4 to 12.6 nm, 2) increases the percent alpha-helix from 62 to 69%, and 3) has no significant effect on delta GD degree (2.2 kcal/mol of apoA-I). This study shows that different HDL subspecies maintain particular apoA-I conformations that confer unique charge and structural characteristics on the particles. It is likely that the charge and conformation of apoA-I are critical molecular properties that modulate the metabolism of HDL particles and influence their role in cholesterol transport.  相似文献   

12.
Apolipoprotein (apo) A-I, the major apoprotein of human high density lipoprotein, is a vital cofactor for lecithin-cholesterol acyltransferase (LCAT), the plasma enzyme responsible for esterification of free cholesterol associated with high density lipoprotein. This esterification is an important component of the reverse cholesterol transport process. An immunochemical approach was used to test the hypothesis that a discrete region of apoA-I was important for LCAT activation. Three human apoA-I-specific monoclonal antibodies were found to inhibit LCAT activation in vitro in a manner directly proportional to their ability to bind to apoA-I-proteoliposomes in fluid phase immunoassays. This relationship was not observed with another four apoA-I-specific antibodies that also were able to bind to the apoA-I proteoliposomes. The use of synthetic peptides representing short amino acid sequences of the apoA-I molecule facilitated the identification of discrete but overlapping apoA-I epitopes for those antibodies that interfered with LCAT-mediated cholesterol esterification. These epitopes spanned amino acid residues 95-121 of mature apoA-I. Therefore, this region is most likely involved in the activation of LCAT by apoA-I.  相似文献   

13.
To evaluate the factors that regulate HDL catabolism in vivo, we have measured the clearance of human apoA-I from rabbit plasma by following the isotopic decay of (125)I-apoA-I and the clearance of unlabeled apoA-I using a radioimmunometric assay (RIA). We show that the clearance of unlabeled apoA-I is 3-fold slower than that of (125)I-apoA-I. The mass clearance of iodinated apoA-I, as determined by RIA, is superimposable with the isotopic clearance of (125)I-apoA-I. The data demonstrate that iodination of tyrosine residues alters the apoA-I molecule in a manner that promotes an accelerated catabolism. The clearance from rabbit plasma of unmodified apoA-I on HDL(3) and a reconstituted HDL particle (LpA-I) were very similar and about 3-4-fold slower than that for (125)I-apoA-I on the lipoproteins. Therefore, HDL turnover in the rabbit is much slower than that estimated from tracer kinetic studies. To determine the role of the kidney in HDL metabolism, the kinetics of unmodified apoA-I and LpA-I were reevaluated in animals after a unilateral nephrectomy. Removal of one kidney was associated with a 40-50% reduction in creatinine clearance rates and a 34% decrease in the clearance rate of unlabeled apoA-I and LpA-I particles. In contrast, the clearance of (125)I-labeled molecules was much less affected by the removal of a kidney; FCR for (125)I-LpA-I was reduced by <10%. The data show that the kidneys are responsible for most (70%) of the catabolism of apoA-I and HDL in vivo, while (125)I-labeled apoA-I and HDL are rapidly catabolized by different tissues. Thus, the kidney is the major site for HDL catabolism in vivo. Modification of tyrosine residues on apoA-I may increase its plasma clearance rate by enhancing extra-renal degradation pathways.  相似文献   

14.
Two apoprotein A-I (apoA-I)-containing lipoproteins, one containing apoA-I and apoA-II (LpA-I/A-II) and the other containing only apoA-I (LpA-I), were examined for their effect on Cu2+-mediated oxidation of low density lipoprotein (LDL). The presence of LpA-I or LpA-I/A-II prevented LDL oxidation when assessed by the electrophoretic mobility, apoprotein B fragmentation and amounts of thiobarbituric acid-reactive substances. The protection of LDL oxidation by these lipoproteins was effective for up to 6 h, with LpA-I being more active than LpA-I/A-II. Results from these in vitro model experiments raise a possibility that LpA-I may play a role in protecting LDL from Cu2+-mediated oxidation.  相似文献   

15.
It is important to understand HDL heterogeneity because various subspecies possess different functionalities. To understand the origins of HDL heterogeneity arising from the existence of particles containing only apoA-I (LpA-I) and particles containing both apoA-I and apoA-II (LpA-I+A-II), we compared the abilities of both proteins to promote ABCA1-mediated efflux of cholesterol from HepG2 cells and form nascent HDL particles. When added separately, exogenous apoA-I and apoA-II were equally effective in promoting cholesterol efflux, although the resultant LpA-I and LpA-II particles had different sizes. When apoA-I and apoA-II were mixed together at initial molar ratios ranging from 1:1 to 16:1 to generate nascent LpA-I+A-II HDL particles, the particle size distribution altered, and the two proteins were incorporated into the nascent HDL in proportion to their initial ratio. Both proteins formed nascent HDL particles with equal efficiency, and the relative amounts of apoA-I and apoA-II incorporation were driven by mass action. The ratio of lipid-free apoA-I and apoA-II available at the surface of ABCA1-expressing cells is a major factor in determining the contents of these proteins in nascent HDL. Manipulation of this ratio provides a means of altering the relative distribution of LpA-I and LpA-I+A-II HDL particles.  相似文献   

16.
Incubation of human serum or high density lipoprotein (HDL) at 37 degrees C in the presence of Fe2+, Fe2+/Fe3+, or Mn2+ results in the increased immunoreactivity (up to 12-, 40-, and 80-fold, respectively) of specific apoA-I epitopes identified as 3D4 and 6B8, while Mg2+, Ca2+, or Cu2+ have minimal or nonsignificant effects. The effect of Mn2+ on the 3D4 epitope requires a specific association with lipids since it can be observed with HDL but not with apoHDL, even in the presence of other lipoproteins. The increase in immunoreactivity noted with Fe2+/Fe3+ or Mn2+ can be blocked with either EDTA or antioxidants (GSH and ascorbic acid), suggesting that it takes place during a peroxidative reaction of the lipids. The peroxidation of lipids which accompanies the increase in immunoreactivity does cross-link apoA-I both with itself and with apoA-II but does not cleave the molecule. The apoA-I-containing lipoproteins which float between 1.18 and 1.22 g/ml and have a pre B-electrophoretic migration are characterized by a very low immunoreactivity with monoclonal antibody 3D4 but are 10-fold or more responsive to Mn2+ treatment than other lipoprotein subfractions, thus demonstrating heterogeneity under oxidative conditions. Proteoliposomes containing apoA-I, cholesterol, and dilinoleyl-lecithin are sensitive to Mn2+ treatment, but not those made with dioleyl- or dimyristoyl-lecithins. However, the increase in 3D4 immunoreactivity is weak and transient and is followed by the disappearance of the epitope caused by cross-linking. We conclude that lipid peroxidation can specifically cross-link apoA-I and change its conformation and antigenicity.  相似文献   

17.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

18.
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways.  相似文献   

19.
Apolipoprotein A-I (apoA-I) induces the translocation of newly synthesized cholesterol as well as caveolin-1 to the cytosolic lipid-protein particle (CLPP) fraction in astrocytes before its appearance in high density lipoprotein generated in the medium (Ito, J., Y. Nagayasu, K. Kato, R. Sato, and S. Yokoyama. 2002. Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem. 277: 7929-7935). We here report the association of signal-related molecules with CLPP. ApoA-I induces rapid translocation of protein kinase Calpha to the CLPP fraction and its phosphorylation in astrocytes. ApoA-I also induces the translocation of phospholipase Cgamma to CLPP. Diacylglyceride (DG) production is increased by apoA-I in the cells, with a maximum at 5 min after the stimulation, and the increase takes place also in the CLPP fraction. An inhibitor of receptor-coupled phospholipase C, U73122, inhibited all the apoA-I-induced events, such as DG production, cholesterol translocation to the cytosol, release of cholesterol, and translocation of protein kinase Calpha into the CLPP fraction. CLPP may thus be involved in the apoA-I-initiated signal transduction in astrocytes that is related to intracellular cholesterol trafficking for the generation of high density lipoprotein in the brain.  相似文献   

20.
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号