首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
An immunohistochemical method utilizing anti-ganglioside GM1 antiserum combined with the peroxidase-antiperoxidase technique was applied to a mixed cell population in primary cultures of newborn rat brain. Ganglioside GM1 was demonstrated to be present in neurons and oligodendroglia, but was absent in astroglia. This demonstration was confirmed using a newly developed biotinylated choleragen-avidin-peroxidase procedure. Primary cultures from newborn rat brain cells that had been subjected to a single treatment with trypsin (first passage) and then cultured for 14 days were predominately (95%) composed of astrocytes that stained positively for glial fibrillary acidic protein but were negative for GM1 ganglioside. This preparation contained only 0.34 nmol ganglioside NeuNAc per mg protein compared to 23.9 nmol gangliosidic NeuNAc/mg protein for a five day culture of newborn rat brain mixed cell culture that had not been subjected to passage. Prolongation of culture time from 5 to 21 days in the latter preparation reduced the ganglioside NeuNAc content to 4.9 nmol gangliosidic NeuNAc/mg protein as the proportion of astrocytes in the culture increased. Ganglioside GM1 could not be detected by TLC analysis of the lipid extract obtained from the “pure” astrocyte culture, although small amounts of GM3 and some polysialogangliosides were detected. About half of the label incorporated upon 24 h incubation of astrocytes in the presence of N-[3H]acetylmannosammine appeared in ganglioside GM3. It is concluded that astrocytes in mixed cell primary cultures from newborn rat brain, as well as astrocytes in astroglial preparations derived from such cultures, do not contain ganglioside GM1.  相似文献   

2.
Primary cultures containing ≥99% neurons, ≥99% non-neuronal cells (glia), or both cell types were prepared from the sympathetic ganglia of 12-day chick embryos. Levels of cyclic AMP in the non-neuronal cells (~14 pmol/mg protein) were approximately 3-fold higher than levels in the neurons (~4 pmol/mg protein). Mixed cultures had concentrations of cyclic AMP which fell between the values measured for pure neuronal and pure non-neuronal cultures. The measured cyclic AMP values of mixed cultures were indistinguishable from values predicted by summing the expected contributions of the neurons and non-neuronal cells. Thus, contact between the neurons and non-neuronal cells in these mixed cultures did not appear to alter the level of cyclic AMP in either cell type. Neuronal-glial interactions, such as the specific neuronal stimulation of non-neuronal cell proliferation, occurred independently of any changes in the level of cyclic AMP in the mixed cultures. Cell density was varied in both pure and mixed cultures, and both cyclic AMP concentrations and amounts of [3H]thymidine incorporation into DNA were measured. The cyclic AMP content of the non-neuronal cells varied inversely with cell density. [3H]Thymidine incorporation was independent of cell density in both neuronal and non-neuronal cultures. Parallel density-dependent decreases in cyclic AMP concentration and [3H]thymidine incorporation were observed in mixed cultures as cell density was increased. The data suggest that there is no relationship between changes in rate of non-neuronal cell proliferation and cyclic AMP levels in these cultures.  相似文献   

3.
Receptors for beta-nerve growth factor (beta NGF), so far regarded as specific cell surface markers of certain peripheral neurones, were found to be expressed on cultured non-neuronal cells of chick embryo dorsal root ganglia (drg) (Kd beta NGF = 2 X 10(-9) M). Autoradiography revealed that binding of [125I] beta NGF was restricted to a subpopulation of the non-neuronal drg cells. Cultured embryonic skin fibroblasts, liver cells, gut cells, muscle fibroblasts, myoblasts, and myotubes, as well as macrophages and the cell lines 3T3, 3T3SV40, BHK, BHK Py, PCC3 and ND1, did not express receptors for beta NGF. Non-neuronal drg cells obtained by a procedure designed for the preparation of pure Schwann cells, as well as RN6 Schwannoma cells, were beta NGF receptor positive. The beta NGF receptor-positive non-neuronal drg cells displayed behaviour typical of Schwann cells in their interaction with drg neurones in single cell, as well as explant cultures. Three stages of neurone-Schwann cell interaction were discernible: (1) association--neurites preferentially grew over beta NGF receptor-positive non-neuronal cells; (2) cell division/alignment--beta NGF receptor-positive non-neuronal cells were induced to proliferate and aligned and elongated along neurites; (3) ensheathment--the outline of beta NGF receptor-positive non-neuronal cells and neurites merged. In drg cell cultures prepared from embryonic stages E6-E10, 25-40% of the non-neuronal cells were beta NGF receptor-positive. Later in development, from E12 onward, less than or equal to 1% of the cultured non-neuronal cells expressed beta NGF receptors.  相似文献   

4.
3T3-L1 preadipocytes differentiate in culture into cells having the enzymatic and morphological characteristics of adipocytes. Differentiation is accompanied by a decrease in total cellular ganglioside content; the ganglioside level is 1.8 to 2.5-fold higher in undifferentiated than in differentiated cells. Gangliosides GM3 and GD1a constitute a majority of total cell gangliosides in both cell types, while ganglioside GM1, the putative choleragen receptor, constitutes less than 5%. Differentiation results in a 75 to 85% decrease in ganglioside GM1. An inverse correlation exists between the percentage of adipocytes in the cell population and: 1) total ganglioside and ganglioside GM1 content, and 2) surface ganglioside GM1 as estimated by choleragen binding or fluorescent staining of bound choleragen. Nondifferentiating 3T3-C2 control cells do not exhibit changes in total ganglioside, ganglioside GM1, or choleragen binding that are observed with 3T3-L1 cells.  相似文献   

5.
The distribution of GM1 ganglioside in developing mouse cerebellum was monitored by indirect immunofluorescent detection of choleragenoid receptors. In frozen sections of cerebellum from mice 5 to 10 days old, fluorescence is observed on granule cells in the inner rows of the external granular layer, in the growing molecular layer, the Purkinje cell layer, and the internal granular layer. In sections of adult mice, fluorescence is restricted to the bodies of Purkinje and internal granule neurons. The percentage of fluorescent dissociated or cultured cerebellar cells increases with the postnatal age of the mouse or the duration of time in vitro. No fluorescence is observed in the absence of choleragenoid or if the test material is extracted with chloroform:methanol. To determine whether the expression of surface GM1 ganglioside in culture is a reflection of a developmental program, mice are injected at particular times with [3H]thymidine and cerebellar cultures processed for simultaneous autoradiography and immunofluorescence. Granule cells from 8-day-old mice having cholera toxin receptors at 20 hr in vitro are a distinct population born 1 day or earlier prior to sacrifice. Cells synthesizing DNA on the day of sacrifice are not fluorescent at 20 hr in vitro. This observation correlates well with immunohistological results showing a lack of fluorescence in the outer proliferative rows of the external granular layer. Therefore GM1 ganglioside is not present on granule cell precursors but is expressed at some time after the cells become postmitotic. GM1 ganglioside is detected on growing parallel fibers in situ and neurites in vitro but not on adult axons, suggesting differential localization at a later stage of development.  相似文献   

6.
Short-term and long-term (greater than 7 months) cultured astrocytes from 14-day-old rat brain were analyzed for ganglioside content. Analysis of the extracted gangliosides by HPTLC revealed that ganglioside GM1 was absent in 35 days and 235 days cultured astrocytes, and that the predominant ganglioside was GM3, showing a double band in both cases. A small amount of the disialogangliosides (GD3, GD1a) was also detected. More than 70% of radioactivities into ganglioside fractions by cultured astrocytes, in the presence of N-[3H]-acetylmannosamine, appeared in ganglioside GM3. The upper band component of GM3 increased 60% in long-term astrocyte cultures compared to 35-day-old cultures. Also, an increased GD3 content in long-term astrocyte cultures was detected. These results suggest that the increase of GD3 and upper band GM3 in long-term cultured astrocytes might be related to the appearance of small processes showing strong reactivity against GFAP and vimentin during astrocyte-subculture.  相似文献   

7.
Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological changes, as well as the opportunity to monitor reversible changes or long-term effects in the event of minor damage. As a first step, we present: a) the developmental expression in organotypic hippocampal brain slice cultures of transgenic fluorescent proteins, useful for the visualisation of neuronal subpopulations and astroglial cells; and b) examples of excitotoxic, glutamate receptor-induced degeneration of hippocampal CA1 pyramidal cells, with corresponding astroglial reactivity in such cultures. The slice cultures were set up according to standard techniques, by using one-week old pups from four transgenic mouse strains which express fluorescent proteins in their neurons and/or astroglial cells. From the time of explantation, and subsequently for up to nine weeks in culture, the transgenic neuronal fluorescence displayed the expected characteristics of a developmental, in vivo-like increase, including both the number and localisation of cells, as well as the intensity of fluorescence. At that stage and later, the transgenic fluorescence clearly permitted the visualisation of cell bodies, larger and smaller dendritic branches, spines and axons. In separate experiments, with a 24-hour exposure of matured sliced cultures to 100 microM of the glutamate agonist, N-methyl-D-aspartate (NMDA), we observed, by time-lapse recording, a gradual, but rapid loss of fluorescent CA1 pyramidal cells, accompanied by astrogliosis of transgene fluorescent astroglial cells. Based on these results, we consider that organotypic brain slice cultures from transgenic mice, with fluorescent neurons and glia, combined with detailed visualisation by time-lapse fluorescence microscopy, have great potential for investigating both major irreversible and minor reversible structural changes in neurons and glia, induced by neurotoxins and other neurodegenerative compounds and conditions.  相似文献   

8.
Pretreatment of hepatocyte cultures with 1 microM d-l-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol-HCL (PPPP) for 24 h decreased the ganglioside GM1 content of the cells by approximately 50% and that of the conditioned medium by 90%. No rhythm in the rate of protein synthesis was detected in dense cultures pretreated with PPPP, but was observed in control dense cultures. Conditioned medium from control dense cultures induced synchrony in sparse cultures, which were non-synchronous in their own medium. In contrast, conditioned medium from dense cultures pretreated with PPPP did not synchronize sparse cultures. Since protein synthesis rhythm is a marker of cell synchronization, i.e. their co-operative activity, then non-oscillatory behavior means loss of cell co-operation. The protein synthesis rhythm was restored 24 h after hepatocytes were transferred to PPPP-free medium. Restoration was more rapid when 0.9 microM gangliosides (standard mixture from bovine brain) were added to the medium just after the withdrawal of PPPP. These novel results concerning the loss of rhythm of protein synthesis in low GM1 ganglioside medium support the conclusion that ganglioside is implicated in the regulation of cell co-operative activity.  相似文献   

9.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

10.
Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.  相似文献   

11.
alpha 1-Adrenergic receptor binding sites and norepinephrine-stimulated 3H-inositol phosphate (3H-InsP) accumulation were measured in primary cultures of neurons and glia from 1-day-old rat brains. The density of alpha 1-adrenergic receptor binding sites was approximately three times higher in membranes from neurons compared to glia. Although norepinephrine was slightly more potent in stimulating 3H-InsP formation in neurons than in glia, the maximal response was greater in glial cells. Norepinephrine-stimulated 3H-InsP formation remained constant for [3H]inositol prelabelling periods of 1-14 days in neurons, whereas the response increased with time in glia and was maximal after 7-10 days of prelabelling. Both the incorporation of [3H]inositol into lipid and basal levels of 3H-InsPs were lower in glial cells than in neurons, which accounted for the greater percent stimulation in glia. Pretreatment with phenoxybenzamine decreased norepinephrine-stimulated 3H-InsP formation in a dose-dependent manner in both neurons and glia by decreasing the maximal response without altering potency. HPLC separation showed that similar types of 3H-InsPs were accumulated in neurons and glial cells. These results demonstrate that alpha 1-adrenergic receptors exist on both neurons and glial cells and activate 3H-InsP accumulation in both cell types. Although receptor density is higher in neurons than in glia, the 3H-InsP response is higher in glia. This difference does not appear to be due to different receptor reserves, but may be due to differential coupling mechanisms in the two cell types.  相似文献   

12.
Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.  相似文献   

13.
A procedure was developed for the cultivation of cells derived from the cerebral hemispheres of the 21-day old rat. Approximately 98 percent of the cells in a 10 day culture are astrocytes that contain glial fibrillary acidic protein. Analysis of the extracted gangliosides by thin layer chromatography revealed that ganglioside GM1 was absent and that the predominant ganglioside was GM3. Very small amounts of the polysialogangliosides GD1a, GD1b, and GT1b were detected. The concentration of gangliosidic NeuNAc per mg protein in these astrocytes was only 3 percent that observed in the 5 day culture of a mixed cell preparation from newborn rat brain. Immunohistochemical and histochemical studies were performed on the mixed cell population of the minced tissue of 21-day old rat brain prior to cultivation. Astrocytes did not stain for hyaluronectin. These cells also did not provide a positive staining reaction for ganglioside GM1 utilizing the antiganglioside GM1 peroxidase-antiperoxidase procedure and the biotinylated choleragen-avidin-peroxidase procedure. These two histochemical methods for ganglioside GM1 also did not stain astrocytes that had been cultured for 5 days. Oligodendroglial cells, which were also present in the uncultured 21-day-old minced brain tissue, stained positively for ganglioside GM1 and hyaluronectin. Hyaluronectin had previously been shown to be a marker for oligodendroglia. Oligodendroglial cells which were present in the 5 day cultures of 21-day old brain tissue also provided a positive reaction for ganglioside GM1. It is concluded that ganglioside GM1 is absent in astroglia. The presence of small amounts of polysialogangliosides in the "pure" astrocyte preparation is discussed.  相似文献   

14.
Epidermal growth factor (EGF) and structurally related peptides promote neuronal survival and the development of midbrain dopaminergic neurons; however, the regulation of their production has not been fully elucidated. In this study, we found that the treatment of striatal cells with dopamine agonists enhances EGF release both in vivo and in vitro. We prepared neuron-enriched and non-neuronal cell-enriched cultures from the striatum of rat embryos and challenged those with various neurotransmitters or dopamine receptor agonists. Dopamine and a dopamine D(1) -like receptor agonist (SKF38393) triggered EGF release from neuron-enriched cultures in a dose-dependent manner. A D(2) -like agonist (quinpirole) increased EGF release only from non-neuronal cell-enriched cultures. The EGF release from striatal neurons and non-neuronal cells was concomitant with ErbB1 phosphorylation and/or with the activation of a disintegrin and metalloproteinase and matrix metalloproteinase. The EGF release from neurons was attenuated by an a disintegrin and metalloproteinase/matrix metalloproteinase inhibitor, GM6001, and a calcium ion chelator, BAPTA/AM. Transfection of cultured striatal neurons with alkaline phosphatase-tagged EGF precursor cDNA confirmed that dopamine D(1) -like receptor stimulation promoted both ectodomain shedding of the precursor and EGF release. Therefore, the activation of striatal dopamine receptors induces shedding and release of EGF to provide a retrograde neurotrophic signal to midbrain dopaminergic neurons.  相似文献   

15.
The physiological degradation of several membrane-bound glycosphingolipids (GSLs) by water-soluble lysosomal exohydrolases requires the assistance of sphingolipid activator proteins (SAPs). Four of these SAPs are synthesized from a single precursor protein (prosaposin). Inherited deficiency of this precursor results in a rare disease in humans with an accumulation of ceramide (Cer) and glycolipids such as glucosylceramide and lactosylceramide (LacCer). In a previous study, we have shown that human SAP-D stimulates the lysosomal degradation of Cer in precursor deficient cells. In order to study the role of SAPs (or saposins) A-D in cellular GSL catabolism, we recently investigated the catabolism of exogenously added [(3)H]labeled ganglioside GM1, Forssman lipid, and endogenously [(14)C]labeled GSLs in SAP-precursor deficient human fibroblasts after the addition of recombinant SAP-A, -B, -C and -D. We found that activator protein deficient cells are still able to slowly degrade gangliosides GM1 and GM3, Forssman lipid and globotriaosylceramide to a significant extent, while LacCer catabolism critically depends on the presence of SAPs. The addition of either of the SAPs, SAP-A, SAP-B or SAP-C, resulted in an efficient hydrolysis of LacCer.  相似文献   

16.
To identify and analyse precursor cells of neuronal and glial cell lineages during the early development of the chick peripheral nervous system, monoclonal antibodies were raised against a population of undifferentiated cells of E6 dorsal root ganglia (DRG). Non-neuronal cells of E6 DRG express surface antigens that are recognized by four monoclonal antibodies, G1, G2, GLI 1 and GLI 2. The proportion of non-neuronal cells in DRG that express the GLI 1 antigen is very high during ganglion formation (80% at E4) and decreases during later development (15% at E14). GLI 2 antigen is expressed only on a minority of the cells at E6 and increases with development. The G1 and G2 antigens are expressed on about 60-80% of the cells between E6 and E14. All cells that express the established glia marker O4 are also positive for the new antigens. In addition, it was demonstrated that GLI 1-positive cells from early DRG, which are devoid of O4 antigen, could be induced in vitro to express the O4 antigen. Thus, the antigen-positive cells are considered as glial cells or glial precursor cells. Surprisingly, the antigen expression by satellite cells of peripheral ganglia is dependent on the type of ganglion: antigens G1, G2 and GLI 1 were not detectable on glial cells of lumbosacral sympathetic ganglia and GLI 2 was expressed only by a small subpopulation. These results demonstrate an early immunological difference between satellite cells of sensory DRG and sympathetic ganglia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The incorporation of radioactive precursors into gangliosides and other glycolipids, glycoproteins, and total lipids has been studied in rat pheochromocytoma PC12 cells. Starting with the same PC12 cell pool, cultures displaying different degrees of neuritic expression in response to nerve growth factor (NGF) and combinations of serum ganglioside GM1 were produced. Attempts were then made to correlate neuritic regulation with biochemical performances of these cells. NGF stimulates the incorporation of [3H]galactose into gangliosides and other glycolipids and glycoproteins and [14C]acetate into total lipids, regardless of the serum concentration. NGF both increased their initial labeling rates and promoted additional and more extensive labeling from culture day 4 onward. Unexpectedly, exogenous GM1 also elicited an increase in ganglioside labeling as well as that of the other lipid classes, but not of glycoproteins. The GM1-induced increase was evident at higher serum concentrations (1%) regardless of the presence or absence of NGF, but not apparent in low (0.15%) serum. Serum levels themselves did not affect labeling patterns in the absence of NGF and GM1. GM1-induced stimulation of labeling reflects an increase in the synthetic activities of the cells, and not increased precursor uptake or reduced product degradation. For all constituents stimulated by GM1, concurrent treatment with NGF produces cumulative effects, suggesting independent mechanisms of action by the two molecules.  相似文献   

18.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.  相似文献   

19.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid β-protein (Aβ). A marked Aβ assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Aβ assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Aβ assembly in the culture was completely suppressed by the coincubation of Aβ with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Aβ (GAβ). In primary neuronal cultures, Aβ assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Aβ assembly through the generation of GAβ, which is an endogenous seed for Aβ assembly in Alzheimer brain.  相似文献   

20.
Previous studies have revealed the presence of Na+Ca2+ exchanger (NCX) activity associated with GM1 ganglioside in the nuclear envelope (NE) of neurons and glia as well as various neural cell lines. The nuclear NCX1 exchanger, unlike that in the plasma membrane, was shown to be tightly associated with GM1 and potentiated by the latter. One non-neural cell line, Jurkat, was found to contain no Na+Ca2+ exchanger of the NCX1, NCX2, or NCX3 types in either nuclear or plasma membrane. To determine whether such absence in the NE is generally characteristic of non-neural cells we have examined two more such cell lines in addition to human lymphocytes. RT-PCR showed NCX1 expression in both HeLa and NCTC cell lines and also NCX2 in the latter; NCX3, a subtype previously observed in NG108-15 cells, was not expressed in either. Immunocytochemical and immunoblot studies indicated NCX1 on the cell surface and nuclear envelope of both cell types. Some alternatively spliced isoforms of NCX1 in the nuclear envelope of both cell types were tightly associated with ganglioside GM1. Human lymphocytes, a mixed population of T and B cells, showed similar evidence for plasma membrane and nuclear expression in some but not all cells. The high affinity association between NCX1 and GM1, explored by reaction with base, acid, and proteases, was found to involve charge–charge interaction with a requirement for a positively charged moiety in NCX.Special issue dedicated to Lawrence F. Eng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号