首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional evolution of the peripheral part of the auditory system is considered. The key point of the appearance of a possibility of analysis of sound waves is formation in the course of evolution of cells with protoplasmic processes (sensillae)--the hair cells--that are transformed into auditory receptors. The fundamental moment is the emergence in evolution of the specialized ionic medium (endolymph) surrounding the auditory receptors. This medium is necessary for generation of receptor potential due to mechanical deformations of the auditory receptor. The characteristic feature of functional evolution of the peripheral part of the auditory system is the many-time repetition in the course of evolution of the main devices to detect and to distinguish sounds. This indicates recapitulation in evolution not only of the central parts of the brain (including central regions of the auditory system), but also of its peripheral part.  相似文献   

2.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) are members of a family of structurally related proteins termed neurotrophins that promote the growth and survival of neurons in the central and peripheral nervous systems. Each of these proteins bind to at least two membrane receptors. One is the low affinity nerve growth factor receptor (p75), which binds each member of the neurotrophin family. The other is one of a family of tyrosine kinase receptors —trkA binds only NGF, the relatedtrkB receptor binds BDNF and NT-3, andtrkC binds NT-3 alone. This article reviews kinetic and biochemical information on p75 and its relationship to thetrk gene products.  相似文献   

3.
The present study describes the localization and distribution of thyroid-stimulating hormone (TSH), thyroglobulin (TGB) and their receptors in Eisenia fetida (Annelida, Oligochaeta) as revealed by immunohistological methods. Immunopositive neuronal and non-neuronal cells are present in both the central nervous system and some peripheral organs (e.g. foregut and coelomocytes). TSH- and TGB-immunopositive neurons in the various ganglia of the central nervous system are differentailly distributed. Most of the immunoreactive cells are found in the suboesophageal ganglion. The stained cells also differ in their shapes (round, oval, pear-shaped) and sizes (small, 12–25 μm; medium, 20–35 μm; large, 30–50 μm). In all ganglia of the central nervous system, TSH-positive neurons additionally show gamma aminobutyric acid (GABA) immunopositivity. Non-neuronal cells also take part in hormone secretion and transport. Elongated TSH-positive cells have been detected in the capsule of the central ganglia and bear granules or vacuoles in areas lacking neurons. Many of capillaries show immunoreactivity for all four tested antibodies in the entire central nervous system and foregut. Among the coelomocytes, granulocytes and eleocytes stain for TSH and its receptor and for TGB but not for thyroid hormone receptor. Most of the granulocytes are large (25–50 μm) but a population of small cells (10–25 μm) are also immunoreactive. None of the coelomocytes stain for GABA. We therefore suggest that the members of this hormone system can modify both metabolism and immune functions in Eisenia. Coelomocytes might be able to secrete, transport and eliminate hormones in this system.This work was supported by the MTA-PTE Adaptation Biology Research Group and National Research and Developmental Fund (NKP 1/048/2001). M.W. is in receipt of a János Bolyai Scholarship.  相似文献   

4.
Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels, a process called cross-talk. The N-methyl-D-aspartate receptor (NMDA receptor) and the γ-aminobutyric acid type A receptor (GABAA receptor) are important excitatory and inhibitory receptors in the central nervous system, respectively. Currently, cross-talk between the NMDA receptor and the GABAA receptor, particularly in the central auditory system, is not well understood. In the present study, we investigated functional interactions between the NMDA receptor and the GABAA receptor using whole-cell patch-clamp techniques in cultured neurons from the inferior colliculus, which is an important nucleus in the central auditory system. We found that the currents induced by aspartate at 100 μmol L−1 were suppressed by the pre-perfusion of GABA at 100 μmol L−1, indicating cross-inhibition of NMDA receptors by activation of GABAA receptors. Moreover, we found that the currents induced by GABA at 100 μmol L−1 (I GABA) were not suppressed by the pre-perfusion of 100 μmol L−1 aspartate, but those induced by GABA at 3 μmol L−1 were suppressed, indicating concentration-dependent cross-inhibition of GABAA receptors by activation of NMDA receptors. In addition, inhibition of IGABA by aspartate was not affected by blockade of voltage-dependent Ca2+ channels with CdCl2 in a solution that contained Ca2+, however, CdCl2 effectively attenuated the inhibition of I GABA by aspartate when it was perfused in a solution that contained Ba2+ instead of Ca2+ or a solution that contained Ca2+ and 10 mmol L−1 BAPTA, a membrane-permeable Ca2+ chelator, suggesting that this inhibition is mediated by Ca2+ influx through NMDA receptors, rather than voltage-dependent Ca2+ channels. Finally, KN-62, a potent inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), reduced the inhibition of I GABA by aspartate, indicating the involvement of CaMKII in this cross-inhibition. Our study demonstrates a functional interaction between NMDA and GABAA receptors in the inferior colliculus of rats. The presence of cross-talk between these receptors suggests that the mechanisms underlying information processing in the central auditory system may be more complex than previously believed.  相似文献   

5.
Summary.  The aim of our study was to estimate the involvement of the peripheral N-methyl-D-aspartate receptors in regulation of cardiovascular function. For this purpose we examined the effects of intravenous injection of the agonists – NMDA (0.025; 0.05 and 1.0 mg/kg iv) and 1R-3R-ACPD (0.025; 0.05 and 1.0 mg/kg iv) – and antagonist of NMDA receptors DL-AP7 (0.02; 0.07 and 0.2 mg/kg iv). To determine if the effects of NMDA come from central or peripheral action we observed the effect during blockade of autonomic ganglion by using the nicotinic receptor antagonist – chlorisondamine (1.25 mg/kg iv). Administration of NMDA in three doses evoked slight hypotension after injection of the medium dose, 0.05 mg/kg. In the condition of pretreatment with 1.25 mg/kg chlorisondamine the hypotensive effect of NMDA was markedly reduced, what might suggest that NMDA-induced hypotension raised from the action within the brain. The competetive NMDA receptor antagonist DL-AP7 slightly increased the blood pressure. None of the injected drug had an influence on the heart rate in our in vivo study. It is concluded that the peripherally localized NMDA receptors may take a part in regulation of cardiovascular system, since their stimulation or blockade evoked the changes of systemic pressure. Received August 6, 2002 Accepted October 10, 2002 Published online January 20, 2003 Aknowledgments This study was supported by a grant No 3-10871 from the State Committee for Scientific Research, Warszawa, Poland. The authors thank Ms. A. Barwińska and Ł. Stalenczyk for technical help. Authors' address: Prof. Konstanty Wiśniewski, Department of Pharmacology, Medical University of Białystok, Mickiewicza 2c, PL-15-222 Białystok, Poland  相似文献   

6.
The axonal transport of neurotransmitter receptors is thought to be a common phenomenon in many neuronal systems. The “machinery” for receptor (protein) “assembly” is found in the cell bodies of neurons and the “manufacture” of receptors takes place there. These receptors are then “shipped” to their ultimate destinations by a transport process. This is an axonal transport mechanism in the case of presynaptic receptors. Some form of transport process may also exist to send receptors out into the dendritic arborizations of neurons, although the latter is more difficult to verify. Axonal transport has been demonstrated, in the peripheral nervous systems, for many different neurotransmitter receptors. In the central nervous system, the results are less clear, but indicate the presence of a transport mechanism for catecholamine, acetylcholine, and opiate sites. One important component then, in the development of receptors, is the transportation to terminal membrane sites where they are ultimately incorporated and available for interaction with neurotransmitters and drugs.  相似文献   

7.
Peripheral auditory frequency tuning in the ensiferan insect Cyphoderris monstrosa (Orthoptera: Haglidae) was examined by comparing tympanal vibrations and primary auditory receptor responses. In this species there is a mis-match between the frequency of maximal auditory sensitivity and the frequency content of the species' acoustic signals. The mis-match is not a function of the mechanical properties of the tympanum, but is evident at the level of primary receptors. There are two classes of primary receptors: low-tuned and broadly tuned. Differences in the absolute sensitivity of the two receptor types at the male song frequency would allow the auditory system to discriminate intraspecific signals from sounds containing lower frequencies. Comparisons of tympanal and receptor tuning indicated that the sensitivity of the broadly tuned receptors did not differ from that of the tympanum, while low-tuned receptors had significantly narrower frequency tuning. The results suggest that the limited specialization for the encoding of intraspecific signals in the auditory system of C. monstrosa is a primitive rather than a degenerate condition. The limited specialization of C. monstrosa may reflect the evolutionary origin of communication-related hearing from a generalized precursor through the addition of peripheral adaptations (tympana, additional receptors) to enhance frequency sensitivity and discrimination. Accepted: 13 March 1999  相似文献   

8.
G-protein coupled receptors (GPCRs) form a crucial component of approximately 80% of hormone pathways. In this paper, the most popular mechanism for activation of GPCRs—the shuttling mechanism—is modelled mathematically. An asymptotic analysis of this model clarifies the dynamics of the system in the absence of drug, in particular which reactions dominate during the different timescales. Equilibrium analysis of the model demonstrates the model’s ability to predict constitutive receptor activity.  相似文献   

9.
Peptides derived from extracellular matrix proteins have the potential to function as potent therapeutic reagents to increase neuronal regeneration following central nervous system (CNS) injury, yet their efficacy as pharmaceutical reagents is dependent upon the expression of cognate receptors in the target tissue. This type of codependency is clearly observed in successful models of axonal regeneration in the peripheral nervous system, but not in the normally nonregenerating adult CNS. Successful regeneration is most closely correlated with the induction of integrins on the surface of peripheral neurons. This suggests that in order to achieve optimal neurite regrowth in the injured adult CNS, therapeutic strategies must include approaches that increase the number of integrins and other key receptors in damaged central neurons, as well as provide the appropriate growth-promoting peptides in a “regeneration cocktail.” In this review, we describe the ability of peptides derived from tenascin-C, fibronectin, and laminin-1 to influence neuronal growth. In addition, we also discuss the implications of peptide/receptor interactions for strategies to improve neuronal regeneration.  相似文献   

10.
Signal processing in the olfactory system is initiated by binding of odorant molecules to receptor molecules embedded in the membranes of sensory neurons. Most analyses of odorant—receptor interaction focus on one or more types of odorants binding with one type of receptors. Here, two basic models of this first step are investigated under the assumption that the population of receptors is not homogenous and is characterized by different activation/deactivation rates. Both, discrete and continuous variation of the rates are considered. The steady-state characteristics of the models are derived. In addition, time to crossing a threshold, defined as a response time, is also investigated. The achieved results are compared with those valid for models with the homogenous population of receptors and interpreted in terms of information coding. The obvious implications of the modeling study—that the heterogeneity of receptors enlarges the coding range and increases the sensitivity of the system—are quantified.  相似文献   

11.
12.
Microglial cells are the resident phagocytic cells of the central nervous system (CNS). They possess a wide range of receptors allowing them to identify and internalize numerous pathogens. We will discuss here the role of the most important receptors of microglia involved in non-opsonin-dependent phagocytosis (mannose receptor, β-glucan receptor, scavenger receptor) and that of receptors involved in the opsonin-dependent phagocytosis, namely the complement 3 (CR3) and the Fcγ receptors (FcγR). First, the molecular and cellular mechanisms induced when these receptors are conducting a phagocytic event are presented. In the second part, we will discuss the role these receptors may play in multiple sclerosis and Alzheimer’s disease, in the elimination by phagocytosis of myelin and beta amyloid peptide respectively. The first two authors contributed equally to this work.  相似文献   

13.
The romantic notion of crickets singing on a warm summer’s evening is quickly dispelled when one comes ear to ear with a stridulating male. Remarkably, stridulating male crickets are able to hear sounds from the environment despite generating a 100 db song (Heiligenberg 1969; Jones and Dambach 1973). This review summarises recent work examining how they achieve this feat of sensory processing. While the responsiveness of the crickets’ peripheral auditory system (tympanic membrane, tympanic nerve, state of the acoustic spiracle) is maintained during sound production, central auditory neurons are inhibited by a feedforward corollary discharge signal precisely timed to coincide with the auditory neurons’ maximum response to self-generated sound. In this way, the corollary discharge inhibition prevents desensitisation of the crickets’ auditory pathway during sound production.  相似文献   

14.
The peripheral and central tonotopy of auditory receptors of the bushcricket Pholidoptera griseoaptera is described. Out of 24 auditory receptor cells of the crista acustica 18 were identified by single-cell recordings in the prothoracic ganglion and complete staining with neurobiotin. Proximal receptor cells of the crista acustica were most sensitive to 6 kHz, with medial cells being sensitive to 20–30 kHz, whereas distal cells were most sensitive to frequencies higher than 50 kHz. Projection areas within the auditory neuropile in the prothoracic ganglion were to- notopically arranged. Proximal cells projected anteriorly, medial cells ventrally and posteriorly, and distal cells to more dorsal regions. Identified receptor cells revealed an interindividual variability of tuning and central projections. Receptor cells from the intermediate organ of a bushcricket were identified for the first time. Receptors of the distal intermediate organ were broadly tuned and less sensitive than those of the crista acustica. Receptor cells of the proximal intermediate organ were most sensitive to frequencies below 10 kHz. They projected in anterior portions of the auditory neuropile, whereas cells of the distal intermediate organ had terminations spread over almost the whole auditory neuropile.  相似文献   

15.
We aimed to investigate the effects of electric shock (ES) on the course of experimental colitis and the involvement of possible central and peripheral mechanisms. In Sprague-Dawley rats (n = 190) colitis was induced by intracolonic administration 2,4,6-trinitrobenzenesulfonic acid (TNBS). The effects of ES (0.3-0.5 mA) or the central administration of corticotropin-releasing factor (CRF; astressin, 10 microg/kg) or cholecystokinin (CCKB; 20 microg/kg) receptor antagonists and peripheral glucocorticoid receptor (RU-486; 10 mg/kg) or ganglion (hexamethonium; 15 mg/kg) blockers on TNBS-induced colitis were studied by the assessment of macroscopic score, histological analysis and tissue myeloperoxidase activity. ES reduced all colonic damage scores (p < 0.05-0.01), while central CRF (p < 0.05-0.001) and CCKB receptor (p < 0.05-0.01) blockers or peripheral hexamethonium (p < 0.05-0.01) and RU-486 (p < 0.05) reversed stress-induced improvement. ES demonstrated an anti-inflammatory effect on colitis, which appears to be mediated by central CRF and CCK receptors with the participation of hypothalamo-pituitary-adrenal axis and the sympathetic nervous system.  相似文献   

16.
Tympanal organs of insects emit distortion-product otoacoustic emissions (DPOAEs) that are indicative of nonlinear ear mechanics. Our study sought (1) to define constraints of DPOAE generation in the ear of Locusta migratoria, and (2) to identify the sensory structures involved. We selectively destroyed the connection between the (peripheral) sensory ganglion and the tympanal attachment points of the “d-cell” dendrites; d-cells are most sensitive to sound frequencies above 12 kHz. This led to a decrease of DPOAEs that were evoked by f 2 frequencies above 15 kHz (decrease of 15–40 dB; mean 28 dB; n = 12 organs). DPOAEs elicited by lower frequencies remained unchanged. Such frequency-specific changes following the exclusion of one scolopidial sub-population suggest that these auditory scolopidia are in fact the source of DPOAEs in insects. Electrical stimulation of the auditory nerve (with short current pulses of 4–10 μA or DC-currents of 0.5 μA) reversibly reduced DPOAEs by as much as 30 dB. We assume that retrograde electrical stimulation primarily affected the neuronal part of the scolopidia. Severing the auditory nerve from the central nervous system (CNS) did not alter the DPOAE amplitudes nor the effects of electrical stimulation.  相似文献   

17.
Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes—from ligands and receptors to executors of PCD—was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae—used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Cheng JK  Ji RR 《Neurochemical research》2008,33(10):1970-1978
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Aδ-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-α, IL-1β), PGE2, bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Nav1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

19.
Theodore H. Bullock (1905–2005) was a pioneer of integrative and comparative neurobiology and one of the founders of neuroethology. His work—distinguished by the tremendous number of different research themes and animal taxa studied—provided the basis for a comprehensive analysis of brain evolution. Among his major achievements are: one of the first physiological analyses of rhythmic central pattern generators; the first simultaneous recording from both the presynaptic and postsynaptic region of a chemical synapse; the demonstration of intercellular communication through graded potentials; and the discovery of two novel sensory organs formed by infrared receptors in pit vipers and electroreceptors in electric fish. He was also one of the first who applied computational tools to the analysis of complex neural signals and to perform a comparative analysis of cognitive events. His two-volume treatise “Structure and function in the nervous system of invertebrates” (with G. Adrian Horridge) remains the most comprehensive, authoritative review of this topic ever written. In addition to his research merits, his legacy is particularly based on his cosmopolitan way of thinking and acting, his large, worldwide school of students, and his committed advocacy for comparative and systems-oriented neurobiology.  相似文献   

20.
Ecology is being introduced to Evolutionary Developmental Biology to enhance organism-, population-, species-, and higher-taxon-level studies. This exciting, bourgeoning troika will revolutionise how investigators consider relationships among environment, ontogeny, and phylogeny. Features are studied (and even defined) differently in ecology, development, and evolution. Form is central to development and evolution but peripheral to ecology. Congruence (i.e., homology) is applied at different hierarchical levels in the three disciplines. Function is central to ecology but peripheral to development. Herein, the supercategories form (‘isomorphic’ or ‘allomorphic’), congruence (‘homologous’ or ‘homoplastic’), and function (‘adaptive’ or ‘nonadaptive’) are combined with two developmental mode (i.e., growth) categories (‘conformational’ or ‘nonconformational’) to provide a 16-class system for analysing features in studies in which ecology, development, and evolution are integrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号