首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecologists commonly use matrix models to study the population dynamics of plants. Most studies of plant demography use plot-based methods to collect data, in part, because mapped individuals are easier to relocate in subsequent surveys and survey methods can be standardized among sites. However, there is tremendous variation among studies, both in terms of plot arrangement and the total area sampled. In addition, there has been little discussion of how alternative sampling arrangements influence estimates of population growth rates (λ) calculated with matrix models. We surveyed the literature to determine what sampling designs are most used in studies of plant demography using matrix models. We then used simulations of three common sampling techniques—using a single randomly placed plot, multiple randomly placed plots, and systematically distributed plots—to evaluate how these alternative strategies influenced the precision of estimates of λ. These simulations were based on long-term demographic data collected on 13 populations of the Amazonian understory herb Heliconia acuminate (Heliconiaceae). We found that the method used to collect data did not affect the bias or precision of estimates in our system—a surprising result, since the advantage in efficiency that is gained from systematic sampling is a well-known result from sampling theory. Because the statistical advantage of systematic sampling is most evident when there is spatial structure in demographic vital rates, we attribute this result to the lack of spatially structured vital rates in our focal populations. Given the likelihood of spatial autocorrelation in most ecological systems, we advocate sampling with a systematic grid of plots in each study site, as well as that researchers ensure that enough area is sampled—both within and across sites—to encompass the range of spatial variation in plant survival, growth, and reproduction.  相似文献   

2.
The expense of traditional capture‐recapture methods, interest in less invasive survey methods, and the circumpolar decline of polar bear (Ursus maritimus) habitat require evaluation of alternative methods for monitoring polar bear populations. Aerial line transect distance sampling (DS) surveys are thought to be a promising monitoring tool. However, low densities and few observations during a survey can result in low precision, and logistical constraints such as heavy ice and fuel and safety limitations may restrict survey coverage. We used simulations to investigate the accuracy and precision of, DS for estimating polar bear abundance in sea ice habitats, using the Chukchi Sea subpopulation as an example. Simulation parameters were informed from a recent pilot survey. Predictions from a resource selection model were used for stratification, and we compared two ratio estimators to account for areas that cannot be sampled. The ratio estimator using predictions of resource selection by polar bears allowed for extrapolation beyond sampled areas and provided results with low bias and CVs ranging from 21% to 36% when abundance was >1,000. These techniques could be applied to other DS surveys to allocate effort and potentially extrapolate estimates to include portions of the landscape that are logistically impossible to survey.  相似文献   

3.
Successful management practices for declining bird species depend often on long-term surveys acquired by point counts. Despite high standardization of field protocols, uncertain detection probability remains an important source of variability and bias in point-count data. This effect is of main importance in low-responsive species as the Red-legged partridge (Alectoris rufa), but it can be counterbalanced, increasing detection probability. In this 2-year study, we sampled using traditional point-count methods, followed by playback sessions for each repetition. We measured detection probability and the efficiency of playback for detectability in the context of a feasibility study on long-term point-count surveys for a harvested game bird, the Red-legged partridge. The results for both study years show a distinct increase in detection probability (23% and 45%, respectively) when using playback vs. the traditional point-count method. We also tested our results for heterogeneity, trap dependence, and time dependence, and no effect was detected. Thus, we suggest that the future design of long-term surveys on Red-legged partridges should consider abundance indices using playback sessions.  相似文献   

4.
The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom? Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and deterministic 'moment closure' models of disease transmission on networks of premises (nodes), network and disease properties that are important for contact tracing efficiency. For random networks with a high average number of connections per node, little clustering of connections and short latency periods, contact tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining disease epidemic size and duration. If the latency period is longer and the average number of connections per node small, or if the network is spatially clustered, then the contact tracing performs better and an overall reduction in the proportion of nodes that are removed during an epidemic is observed.  相似文献   

5.
Long‐term wildlife monitoring involves collecting time series data, often using the same observers over multiple years. Aging‐related changes to these observers may be an important, under‐recognized source of error that can bias management decisions. In this study, we used data from two large, independent bird surveys, the Atlas of the Breeding Birds of Ontario (“OBBA”) and the North American Breeding Bird Survey (“BBS”), to test for age‐related observer effects in long‐term time series of avian presence and abundance. We then considered the effect of such aging phenomena on current population trend estimates. We found significantly fewer detections among older versus younger observers for 13 of 43 OBBA species, and declines in detection as an observer ages for 4 of 6 vocalization groups comprising 59 of 64 BBS species. Consistent with hearing loss influencing this pattern, we also found evidence for increasingly severe detection declines with increasing call frequency among nine high‐pitched bird species (OBBA); however, there were also detection declines at other frequencies, suggesting important additional effects of aging, independent of hearing loss. We lastly found subtle, significant relationships between some species' published population trend estimates and (1) their corresponding vocalization frequency (n ≥ 22 species) and (2) their estimated declines in detectability among older observers (n = 9 high‐frequency, monotone species), suggesting that observer aging can negatively bias long‐term monitoring data for some species in part through hearing loss effects. We recommend that survey designers and modelers account for observer age where possible.  相似文献   

6.
A trust network is a social network in which edges represent the trust relationship between two nodes in the network. In a trust network, a fundamental question is how to assess and compute the bias and prestige of the nodes, where the bias of a node measures the trustworthiness of a node and the prestige of a node measures the importance of the node. The larger bias of a node implies the lower trustworthiness of the node, and the larger prestige of a node implies the higher importance of the node. In this paper, we define a vector-valued contractive function to characterize the bias vector which results in a rich family of bias measurements, and we propose a framework of algorithms for computing the bias and prestige of nodes in trust networks. Based on our framework, we develop four algorithms that can calculate the bias and prestige of nodes effectively and robustly. The time and space complexities of all our algorithms are linear with respect to the size of the graph, thus our algorithms are scalable to handle large datasets. We evaluate our algorithms using five real datasets. The experimental results demonstrate the effectiveness, robustness, and scalability of our algorithms.  相似文献   

7.
Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar''s hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week.  相似文献   

8.
Abstract: Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards (Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (Ǐ), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (Ň) for 14 surveys during winters 2002–2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40–48% among all surveys and contributed 48–61% of the estimated variance of Ň. However, mean-squared errors were consistently less for Ň than Ǐ. Estimates of Ň met our goals for precision (CV ≤ 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.  相似文献   

9.
ABSTRACT Estimating detection error, as well as the magnitude of other potential survey biases, is essential when sampling efforts play a role in the estimation of population size and management of wildlife populations. We quantified visual biases in aerial surveys of nesting wading birds (Ciconiiformes) in colonies in the Florida Everglades using a negative binomial count regression model to compare numbers of nests in quadrats counted on the ground with numbers estimated from aerial photographs of the same quadrats. The model also allowed the determination of degree of difference between monitoring results based upon such factors as nest density, vegetative cover, and nest turnover rates. Aerial surveys of White Ibis (Eudocimus albus) colonies underestimated the true number of nests found during ground counts by 11.1%, and underestimates were significantly greater (P= 0.047) in a colony with high nest turnover. Error rates did not differ for quadrats that varied in the density of White Ibis nests did not differ, and visual bias did not increase with vegetative complexity (P= 0.73). Estimates of nest density in colonies of Great Egrets (Ardea alba) based on aerial surveys were higher than ground counts for 38% of the quadrats sampled, and mean visual bias was 23.1%. Species misidentification likely contributed to visibility bias for Great Egrets in our study, with some Snowy Egrets almost certainly mistaken for Great Egrets in aerial photos. Biases of the magnitude we observed fro Great Egrets and White Ibises can mask true population trends in long‐term monitoring and, therefore, we recommend that detection probability be explicitly evaluated when conducting aerial surveys of nesting birds.  相似文献   

10.
We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.  相似文献   

11.
Obtaining useful estimates of wildlife abundance or density requires thoughtful attention to potential sources of bias and precision, and it is widely understood that addressing incomplete detection is critical to appropriate inference. When the underlying assumptions of sampling approaches are violated, both increased bias and reduced precision of the population estimator may result. Bear (Ursus spp.) populations can be difficult to sample and are often monitored using mark‐recapture distance sampling (MRDS) methods, although obtaining adequate sample sizes can be cost prohibitive. With the goal of improving inference, we examined the underlying methodological assumptions and estimator efficiency of three datasets collected under an MRDS protocol designed specifically for bears. We analyzed these data using MRDS, conventional distance sampling (CDS), and open‐distance sampling approaches to evaluate the apparent bias‐precision tradeoff relative to the assumptions inherent under each approach. We also evaluated the incorporation of informative priors on detection parameters within a Bayesian context. We found that the CDS estimator had low apparent bias and was more efficient than the more complex MRDS estimator. When combined with informative priors on the detection process, precision was increased by >50% compared to the MRDS approach with little apparent bias. In addition, open‐distance sampling models revealed a serious violation of the assumption that all bears were available to be sampled. Inference is directly related to the underlying assumptions of the survey design and the analytical tools employed. We show that for aerial surveys of bears, avoidance of unnecessary model complexity, use of prior information, and the application of open population models can be used to greatly improve estimator performance and simplify field protocols. Although we focused on distance sampling‐based aerial surveys for bears, the general concepts we addressed apply to a variety of wildlife survey contexts.  相似文献   

12.
Social learning has been documented in a wide diversity of animals. In free-living animals, however, it has been difficult to discern whether animals learn socially by observing other group members or asocially by acquiring a new behaviour independently. We addressed this challenge by developing network-based diffusion analysis (NBDA), which analyses the spread of traits through animal groups and takes into account that social network structure directs social learning opportunities. NBDA fits agent-based models of social and asocial learning to the observed data using maximum-likelihood estimation. The underlying learning mechanism can then be identified using model selection based on the Akaike information criterion. We tested our method with artificially created learning data that are based on a real-world co-feeding network of macaques. NBDA is better able to discriminate between social and asocial learning in comparison with diffusion curve analysis, the main method that was previously applied in this context. NBDA thus offers a new, more reliable statistical test of learning mechanisms. In addition, it can be used to address a wide range of questions related to social learning, such as identifying behavioural strategies used by animals when deciding whom to copy.  相似文献   

13.
St Clair K  O'Connell D 《Biometrics》2012,68(1):165-173
Link-tracing sampling designs can be used to study human populations that contain "hidden" groups who tend to be linked together by a common social trait. These links can be used to increase the sampling intensity of a hidden domain by tracing links from individuals selected in an initial wave of sampling to additional domain members. Chow and Thompson (2003, Survey Methodology 29, 197-205) derived a Bayesian model to estimate the size or proportion of individuals in the hidden population for certain link-tracing designs. We propose an addition to their model that will allow for the modeling of a quantitative response. We assess properties of our model using a constructed population and a real population of at-risk individuals, both of which contain two domains of hidden and nonhidden individuals. Our results show that our model can produce good point and interval estimates of the population mean and domain means when our population assumptions are satisfied.  相似文献   

14.
Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network’s stability by adjusting the network’s properties and give some proposal on the designs of these types of networks from the points of game theory and stability.  相似文献   

15.
We present a novel and straightforward method for estimating recent migration rates between discrete populations using multilocus genotype data. The approach builds upon a two-step sampling design, where individual genotypes are sampled before and after dispersal. We develop a model that estimates all pairwise backwards migration rates ( mij , the probability that an individual sampled in population i is a migrant from population j ) between a set of populations. The method is validated with simulated data and compared with the methods of BayesAss and Structure. First, we use data for an island model and then we consider more realistic data simulations for a metapopulation of the greater white-toothed shrew ( Crocidura russula ). We show that the precision and bias of estimates primarily depend upon the proportion of individuals sampled in each population. Weak sampling designs may particularly affect the quality of the coverage provided by 95% highest posterior density intervals. We further show that it is relatively insensitive to the number of loci sampled and the overall strength of genetic structure. The method can easily be extended and makes fewer assumptions about the underlying demographic and genetic processes than currently available methods. It allows backwards migration rates to be estimated across a wide range of realistic conditions.  相似文献   

16.
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erd?s–Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-performs other intuitive link removal algorithms, such as removing links in order of edge centrality.  相似文献   

17.
Although genetic association studies using unrelated individuals may be subject to bias caused by population stratification, alternative methods that are robust to population stratification, such as family-based association designs, may be less powerful. Furthermore, it is often more feasible and less expensive to collect unrelated individuals. Recently, several statistical methods have been proposed for case-control association tests in a structured population; these methods may be robust to population stratification. In the present study, we propose a quantitative similarity-based association test (QSAT) to identify association between a candidate marker and a quantitative trait of interest, through use of unrelated individuals. For the QSAT, we first determine whether two individuals are from the same subpopulation or from different subpopulations, using genotype data at a set of independent markers. We then perform an association test between the candidate marker and the quantitative trait, through incorporation of such information. Simulation results based on either coalescent models or empirical population genetics data show that the QSAT has a correct type I error rate in the presence of population stratification and that the power of the QSAT is higher than that of family-based association designs.  相似文献   

18.
Abstract: Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1–100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36–42%, and associated standard errors increased 38–55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):808–813; 2008)  相似文献   

19.
Encoding brain regions and their connections as a network of nodes and edges captures many of the possible paths along which information can be transmitted as humans process and perform complex behaviors. Because cognitive processes involve large, distributed networks of brain areas, principled examinations of multi-node routes within larger connection patterns can offer fundamental insights into the complexities of brain function. Here, we investigate both densely connected groups of nodes that could perform local computations as well as larger patterns of interactions that would allow for parallel processing. Finding such structures necessitates that we move from considering exclusively pairwise interactions to capturing higher order relations, concepts naturally expressed in the language of algebraic topology. These tools can be used to study mesoscale network structures that arise from the arrangement of densely connected substructures called cliques in otherwise sparsely connected brain networks. We detect cliques (all-to-all connected sets of brain regions) in the average structural connectomes of 8 healthy adults scanned in triplicate and discover the presence of more large cliques than expected in null networks constructed via wiring minimization, providing architecture through which brain network can perform rapid, local processing. We then locate topological cavities of different dimensions, around which information may flow in either diverging or converging patterns. These cavities exist consistently across subjects, differ from those observed in null model networks, and – importantly – link regions of early and late evolutionary origin in long loops, underscoring their unique role in controlling brain function. These results offer a first demonstration that techniques from algebraic topology offer a novel perspective on structural connectomics, highlighting loop-like paths as crucial features in the human brain’s structural architecture.  相似文献   

20.
Predators often avoid aposematic prey as a result of aversions to particular prey signals (e.g., bright colours and noxious odours). These aversions may be flexible, that is, they can be reinforced or extinguished with experience. As such, we might expect populations to differ in their biases against certain prey characteristics (e.g., colour or pattern) depending on the prey available in the community. Here, we tested whether the jumping spider, Habronattus brunneus(Salticidae), exhibits colour biases against red prey using choice tests with novel (artificially coloured) prey, and then went on to examine how these biases differ across four geographically distinct focal populations. We then conducted preliminary field surveys at each of these four sites to explore differences in habitat type and prey availability. Overall, we found that field‐caught Hbrunneusexhibited a bias against the colour red (compared with black) when tested with artificially coloured prey in the laboratory. However, the degree of colour bias varied among our four focal populations (with two populations exhibiting strong biases against red and two showing no colour biases). Preliminary habitat and prey surveys suggest that these populations also differed in both habitat structure (percentage of grass, leaf litter and bare ground) and prey availability across many taxa, suggesting that the spiders from each population may have been exposed to, and had experiences with, different potential prey. We discuss how prey availability may influence colour biases in predators, as well as how predator experience may shape the evolution of prey colour signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号