首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims Despite the number of orchid speciesthat are thought to be pollinated by hummingbirds, our knowledgeof the nectaries of these orchids is based solely on a singlespecies, Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge.Nevertheless, it is predicted that such nectaries are likelyto be very diverse and the purpose of this paper is to comparethe nectary and the process of nectar secretion in Hexisea imbricata(Lindl.) Rchb.f. with that of Maxillaria coccinea so as to beginto characterize the nectaries of presumed ornithophilous Neotropicalorchids. • Methods Light microscopy, transmission electronmicroscopyand histochemistry were used to examine the histology and chemicalcomposition of nectary tissue and the process of nectar secretionin H. imbricata. • Key Results and Conclusions The nectary of H. imbricatahas a vascular supply, is bound by a single-layered epidermiswith few stomata and comprises two or three layers of subepidermalsecretory cells beneath which lie several layers of palisade-likeparenchymatous cells, some of which contain raphides or mucilage.The secretory cells are collenchymatous and their walls havenumerous pits with associated plasmodesmata. They contain thefull complement of organelles characteristic of secretory cellsas well as intravacuolar protein bodies but some of the secretoryepidermal cells, following secretion, collapse and their anticlinalwalls seem to fold. Nectar secretion is thought to be granulocrineand, following starch depletion, lipid droplets collect withinthe plastids. The nectar accumulates beneath the cuticle whichsubsequently forms swellings. Finally, nectar collects in thesaccate nectary spur formed by the fusion of the margins ofthe labellum and the base of the column-foot. Thus, althoughthe nectary of H. imbricata and M. coccinea have many featuresin common, they nevertheless display a number of important differences.  相似文献   

2.
Ultrastructure, Development and Secretion in the Nectary of Banana Flowers   总被引:3,自引:1,他引:2  
The nectaries of Musa paradisiaca L. var. sapientum Kuntze werefound to secrete in addition to the sugar solution, a polysaccharidemucilage and a very electron dense, homogenous material whichwas apparently protein. The polysaccharide had already startedto appear outside the epithelial cells of the nectary at veryearly stages of nectary development. At somewhat later developmentalstages the very dense homogenous material appeared in the formof droplets between the plasmalemma and cell wall in massesin the nectary lumen. Nectar secretion started in flowers whenthe bract in the axil of which they occurred had just recoiled.The ER elements were dilated and formed vesicles and the Golgibodies were very active, at the stage of the nectar secretionand at stages preceding it, except at the stage just beforesecretion. In all stages of nectary development the dilatedER elements and most large Golgi vesicles contained fibrillarmaterial. It is suggested that both ER and the Golgi apparatusare involved in the secretion of the sugar solution and of thepolysaccharides. There was not enough evidence as to where inthe cell the very dense homogenous material is synthesized. A few developmental stages of the nectaries of the male flowersof the Dwarf Cavendish banana, which do not secrete nectar,were also studied. It was seen that at early stages of development,the ultra-structure of the nectary of this banana variety wassimilar to that of M. paradisiaca var. sapientum. However, theepithelial nectary cells of the Dwarf Cavendish banana disintegratedbefore maturation of the nectary. Musa paradisiaca L, banana, floral nectaries, ultrastructure  相似文献   

3.
This is the first report of an extrafloral nectary (EFN) fromAsian Meliaceae and from subfamily Melioideae. The pinnatelycompound leaf of Cipadessa baccifera has 25–35 small,ellipsoidal EFNs abaxially on the rachis, with occasional EFNson leaflets. EFNs secrete nectar until leaf maturity, then graduallywither. Each convex, ellipsoidal EFN is parenchymatous, withouta palisade epidermis, a delimiting nectary sheath, or any vascularaffiliation. This EFN differs markedly from the typical ‘Flachnektarien’EFN described earlier from neotropical Swietenia species. Cipadessa baccifera (Roth.) Miq., extrafloral nectary, Meliaceae, nectary anatomy  相似文献   

4.
Haploid, diploid and tetraploid lines ofBrassica rapaL. (syn.campestris),and allotetraploidB. napusL., were examined to determine theinfluence of ploidy on floral features, particularly nectarymorphology and anatomy, and to relate nectary structure to nectarproduction capacity. Except for haploids, all lines were rapid-cycling.Average flower dry weight, and petal length and width, werein the descending orderB. napus>B. rapa (4n) >2n>n.Pollen grains of 4nplants were larger than those of 2nplants;haploids lacked pollen. All lines developed nectaries. Typically, each flower producedtwo pairs of nectaries, of different types and nectar productioncapacity. Normally, each lateral gland was located above thebase of a short stamen, and together this pair yielded mostof a flower 's nectar carbohydrate. Each median nectary aroseat the outer junction of the bases of two adjacent long stamens.All lateral nectaries received a vascular supply of phloem alone,but median glands received reduced amounts of phloem, or lackedvasculature altogether. Most nectaries were solitary, but 14%of all flowers, and especially those of 2n B. rapa,had at leastone median and lateral gland connected. Obvious variation existed in nectary morphology between ploidylevels, between flowers of the same plant, and even within flowers.Ten forms of each nectary type were recognized. Plants producingthe most nectar carbohydrate had high frequencies of lateralnectaries which were symmetrical, unfurrowed swellings. TetraploidsofB. rapahad both the highest frequencies of furrowed lateralglands, and of isolated segments of nectarial tissue at thatposition. Even these separated nectarial outgrowths receivedphloem and produced a nectar droplet. At the median location,nectaries were commonly of two forms: peg- or fan-shaped. Lobeson median nectaries, up to four per nectary, were detected inalmost half of glands of 4nflowers examined; lobes were absentin haploids. Brassica rapa; Brassica napus; flower size; nectar production; nectary variability; petal size; ploidyphloem; pollen; rapeseed  相似文献   

5.
FAHN  ABRAHAM 《Annals of botany》1987,60(3):299-308
The structure and ultrastructure of the extrafloral nectariesof Sambucus nigra L. were studied. These nectaries are stalk-likeand occur at the bases of the leaves and leaflets. The nectariferoustissue occurs at the top of the nectary and is continuous withthe single central vascular bundle. The nectariferous cellshave a dense cytoplasm and contain a well developed endoplasmicreticulum. With the commencement of nectar secretion disintegrationof the nectariferous cells takes place. This process startsat the summit of the nectary and proceeds downwards. The questionas to whether the process of secretion is holocrine or merocrineis discussed. Sambucus nigra, Extrafloral nectary, nectariferous cells, disintegration of cells  相似文献   

6.
Different histochemical and cytochemical methods were employedon nectaries of Hibiscus rosa-sinensis. Light microscopy revealedthe presence of oil and mucilage cells in the subglandular tissue.Electron microscopy showed intense activity of ATPase in thephloem subtending the nectary. When CaCl2 or tannic acid areadded to the fixative, electron-dense globular deposits areencountered in close contact with the plasmalemma of the secretorycells. In this case the endoplasmic reticulum appears in alternatingelectron-dense areas. In young nectaries the application oftannic acid results in electron-opaque deposits at the cellplate of dividing cells. The prolonged incubation of nectariesin OsO4 results in an obvious difference in staining betweennectary hairs and subglandular cells. Structures stained selectivelywith OsO4 are the endoplasmic reticulum, nuclear envelope, plastids,and mitochondria. The cytochemical experiments support the viewthat in nectaries of Hibiscus rosa-sinensis, the pre-nectaroriginates from the phloem and it is symplastically carriedvia the plasmodesmata to the secretory cells of the hair fromwhere it is secreted. The principal element which is involvedboth in the pre-nectar transport and nectar secretion is theendoplasmic reticulum. Key words: Lipid staining, polysaccharides, tannic acid, calcium binding sites, ATPase activity, osmium impregnation  相似文献   

7.
The structure and ultrastructure of the nectaries of the monoeciousspecies Ecballium elaterium were studied. Large differencesin size and structure of the nectaries were observed in thetwo genders of flowers, those of the staminate flowers beingmuch larger and more developed than those of the pistillateflowers. The latter do not secrete measurable amounts of nectar.In the nectariferous cells, especially of the staminate flowers,numerous plasmodesmata are present. The pre-nectar originatingin the phloem is stored in the plastids of the nectariferouscells primarily as starch grains. The nectar appears to be exudedfrom the nectary via modified stomata. Very small insects ofthe order Hemiptera were found to dwell inside the flowers ofthe two genders, but in different numbers; their number in thestaminate flowers was more than twice that in the pistillateflowers. These insects may take part in the process of pollination.Copyright 2001 Annals of Botany Company Ecballium elaterium, Cucurbitaceae, monoecious plant, nectaries, structure, ultrastructure, nectar secretion, stomata, Hemiptera insects  相似文献   

8.
Development and Ultrastructure of Cucurbita pepo Nectaries of Male Flowers   总被引:2,自引:0,他引:2  
The development of the nectary of the male flower ofCucurbitapepo L. was studied from 5d before to 2d after anthesis. Thenectary consists of parenchyma that stores starch in the presecretorystages, and epidermis. An hour before nectar secretion begins,the starch is hydrolyzed. The nectar exudes from the stomataand forms a continuous layer on the nectary surface. Duringanthesis the nectar may all be collected by pollinators or someor all of it may remain in the nectary and be successively resorbed.The nectary parenchyma stores material for synthesizing thesugar component of nectar and stores similar material againafter nectar resorption. It is also responsible for nectar productionand secretion. The epidermis is actively involved in the reabsorptionprocess. The resorption of nectar is a phenomenon that allowsthe plant to recover invested energy. Few observations on thisphenomenon have hitherto been published. Amyloplasts; Cucurbita pepo L.; courgette; nectaries; Nectar resorption; plastid; secretion; starch  相似文献   

9.
The occurrence, morphology, ontogeny, structure and preliminary nectar analysis of floral and extrafloral nectaries are studied inKigelia pinnata of the Bignoniaceae. The extrafloral nectaries occur on foliage leaves, sepals and outer wall of the ovary, while the floral nectary is situated around the ovary base as an annular, massive, yellowish ring on the torus. The extrafloral nectaries originate from a single nectary initial. The floral nectary develops from a group of parenchymatous cells on the torus. The extrafloral nectaries are differentiated into multicellular foot, stalk and cupular or patelliform head. The floral nectary consists of parenchymatous tissue. The floral nectaries are supplied with phloem tissue. The secretion is copious in floral nectary. Function of the nectary, preliminary nectar analysis, and symbiotic relation between nectaries and animal visitors are discussed.  相似文献   

10.
The floral nectar chemical composition and nectary structureof some Argentinean Bromeliaceae were studied, including fieldobservations on pollinators. Twenty species belonging to eightgenera from the three subfamilies were analysed. The nectarcomponents report is mostly new since no comprehensive studyhas been carried out on the family previously. Sugars were alwayspresent, while alkaloids, lipids, phenols, and proteins werenot detected in any sample. Reducing acids were found in threespecies. Amino acids were detected in a very low concentrationin only about half the samples. Pitcairnioideae species showa mean balanced disaccharide/monosaccharide nectar sugar composition,Bromelioideae had hexose-rich nectars and Tillandsioideae saccharose-dominantones. Nectar concentration ranged from 16 to 48 %. All taxabear septal nectaries with many common features. Pitcairnioideaeand Tillandsioideae members have half-inferior ovaries, a featuremostly overlooked in previous studies. Three types of nectaryarchitecture were recognized in both subfamilies. Bromelioideaehave inferior ovaries and possess comparable nectaries. Hummingbirdsconstitute the main flower pollinators of many species but butterfliesand bees were occasionally seen in two species, cropping nectarand pollen, respectively. Argentinean Bromeliaceae,, floral nectar, nectary structure, pollinators, alkalinity, abromeitiella, Aechmea, Bromelia, Deuterocohnia, Dyckia, puya, Tillandsia, vriesea  相似文献   

11.
Slipper spurge (Pedilanthus tithymaloides) bears one or two stalked extrafloral nectaries on either side of the leaf base and one at the leaf tip. The mature nectary is differentiated into multicellular zones: head, neck, and stipe. The nectary arises as a small group of meristematic cells with densely staining cytoplasm and nuclei. The columnar secretory cells show changes in their chemical nature at different developmental stages of the nectary. There is a basipetal sequence in the development and decay of the tissues in the nectary. Decay of the nectary begins at the head, abscission occurs at the line between stipe and neck regions, and the scars of the fallen nectaries are left when the stipe cells also collapse.  相似文献   

12.
The floral nectar chemical composition and nectary structureof some Argentinean Bromeliaceae were studied, including fieldobservations on pollinators. Twenty species belonging to eightgenera from the three subfamilies were analysed. The nectarcomponents report is mostly new since no comprehensive studyhas been carried out on the family previously. Sugars were alwayspresent, while alkaloids, lipids, phenols, and proteins werenot detected in any sample. Reducing acids were found in threespecies. Amino acids were detected in a very low concentrationin only about half the samples. Pitcairnioideae species showa mean balanced disaccharide/monosaccharide nectar sugar composition,Bromelioideae had hexose-rich nectars and Tillandsioideae saccharose-dominantones. Nectar concentration ranged from 16 to 48%. All taxa bearseptal nectaries with many common features. Pitcairnioideaeand Tillandsioideae members have half-inferior ovaries, a featuremostly overlooked in previous studies. Three types of nectaryarchitecture were recognized in both subfamilies. Bromelioideaehave inferior ovaries and possess comparable nectaries. Hummingbirdsconstitute the main flower pollinators of many species but butterfliesand bees were occasionally seen in two species, cropping nectarand pollen, respectively. Argentinean Bromeliaceae, floral nectar, nectary structure, pollinators, Abromeitiella, Aechmea, Bromelia, Deuterocohnia, Dvckia, Puva, Tillandsia, Vriesea  相似文献   

13.
The nectaries of Ipomoea purpurea wilt in the late flowering period. The senescence process of nectaries is frequently associated with cell lysis. In this paper, various techniques were used to investigate whether programmed cell death (PCD) was involved in the senescence process of nectaries in I. purpurea. Ultrastructural studies showed that nectary cells began to undergo structural distortion, chromatin condensation, mitochondrial membrane degradation, and vacuolar-membrane dissolution and rupture after bloom. 4′,6-Diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine-5′-triphosphate (dUTP) nick end-labeling (TUNEL) assay showed that nectary cell nuclear DNA began to degrade during the budding stage, and disappeared in the fruiting stage. DNA gel electrophoresis showed that degradation of DNA was random. Together, these results suggest that PCD participate in the senescence of the nectary in I. purpurea. PCD began during the budding period, followed by significant changes in nectary morphology and structure during the flowering period. During the fruiting stage, the PCD process is complete and the nectary degrades.  相似文献   

14.
The structure of the floral nectaries of Cornus alba was studied using light microscopy as well as scanning and transmission electron microscopy. It was found that the nectary gland of white dogwood had the shape of a fleshy ring surrounding the base of the style of the inferior ovary. Nectar secretion occurs through slightly depressed stomata, evenly distributed in the epidermis of the nectary. The nectariferous tissue is composed of over a dozen layers of heterogeneously structured cells. Between groups of cells with a typical structure, characteristic for the secretory tissue, cells occur with degenerated content and a high degree of vacuolization. In the area of the nectary gland cells, no vascular tissue elements were observed. The nectary was irrigated by the vasculature of the flower receptacle.  相似文献   

15.
Nectar is secreted for up to 11d after anthesis inChamelauciumuncinatum . The volume and sucrose concentration secreted variesbetween flowers, plants and days. The period of nectar secretioncoincides with the period of pollen presentation and stigmaticreceptivity suggesting nectar is part of an efficient reproductivestrategy inC. uncinatum . The nectary ofC. uncinatum consistsof the entire upper surface of the ovary and hypanthium. Theepidermis of the nectary is covered by a thickened cuticle whichis only broken at the sites of the numerous modified stomatawhich are scattered across its surface. It is suggested thatnectar is secreted onto the surface of the ovary via these modifiedstomata. The presence of extensive and well developed endoplasmicreticulum, mitochondria and Golgi bodies in the nectar secretingcells indicates that a granulocrine mechanism of secretion isoccurring inC. uncinatum . Chamelaucium uncinatum ; Geraldton Waxflower; floral nectaries; nectar production; modified stomata  相似文献   

16.
Floral nectary development and nectar secretion in three species of Passiflora were investigated with light and electron microscopy. The nectary ring results from the activity of an intercalary meristem. Increased starch deposition in the amyloplasts of the secretory cells parallels maturation of the nectary phloem. Large membrane-bound protein bodies are observed consistently in phloem parenchyma cells, but their function is presently unknown. The stored starch serves as the main source of nectar sugars at anthesis. Plastid envelope integrity is maintained during starch degradation, and there is no evidence of participation of endoplasmic reticulum or Golgi in the secretion of pre-nectar. It is concluded that in these starchy nectaries granulocrine secretion, commonly reported for floral nectaries, does not occur.  相似文献   

17.
The genus Campsis (Bignoniaceae), with one New World and one Old World species, is unusual among temperate plants in having five distinct nectary sites. Multiple nectaries occur at all four of the extrafloral sites (petiole, calyx, corolla, fruit), representing an advanced strategy for ant attraction. The morphology and anatomy of the extrafloral nectaries in both species are uniform for the petioles, calyces, and young fruits; those on the outer corolla lobes are of slightly different forms. The generalized structure consists of one layer of basal cells, and a one- to two-layered secretory cup. Because of their small size, there is no vascular tissue in them. The large, vascularized (phloem only) floral nectary is an annular structure subtending the ovary.  相似文献   

18.
Extrafloral nectaries situated on the adaxial side of the petiolebase are differentiated into a long head, comprising subepithelialground tissue surrounded by a layer of elongated palisade-likeepithelial cells and a short stalk from the nectary meristem.Many ultrastructural changes occur in epithelial and subepithelialcells of the nectary, from the young to secretory stages, suchas an increase in the amount of cytoplasm rich in mitochondriawith well developed cristae, rough endoplasmic reticulum (rER),smooth endoplasmic reticulum (sER) tubules and Golgi bodies.Plasmalemma invaginations with secretory vesicles occur longthe radial walls. Substantial amounts of secretory materialaccumulate in the gap between the radial walls and subcuticularspace, probably carried by the secretory vesicles from the cytoplasmat the secretory stage. Before cessation of secretion the cytoplasmbecomes vesiculated and the volume of the vacuome increases.At the post secretory stage, cytolytic processes and death ofcells occur. The subepithelial cells attain their maturity priorto epithelial cells. Histochemical localization reveals thepresence of lipids, proteins and insoluble polysaccharides withinthe epithelial cells and in the secretory material depositedin the subcuticular space as well as the gap between the radialwalls of the epithelial cells and outside the cuticle. Fine structure, nectary, Plumeria rubra, granulocrine secretion  相似文献   

19.
Intricate associations between floral morphology and pollinator foraging behaviour are common. In this context, the presence and form of floral nectaries can play a crucial role in driving floral evolution and diversity in flowering plants. However, the reconstruction of the ancestral state of nectary form is often hampered by a lack of anatomical studies and well‐resolved phylogenetic trees. Here, we studied 39 differentially pollinated Pedicularis spp., a genus with pronounced interspecific variation in colour, shape and size of the corolla. Anatomical and scanning electron microscopy observations revealed two nectary forms [bulged (N = 27) or elongated (N = 5)] or the absence of nectaries (N = 7). In a phylogenetic context, our data suggest that: (1) the bulged nectary should be the ancestral state; (2) nectaries were independently lost in some beaked species; and (3) elongated nectaries evolved independently in some clades of beakless species. Phylogenetic path analysis showed that nectary presence is indirectly correlated with beak length/pollinator behaviour through an intermediate factor, nectar production. No significant correlation was found between nectary type and nectar production, beak length or pollinator behaviour. Some beaked species had nectary structures, although they did not produce nectar. The nectary in beaked species may be a vestigial structure retained during a recent rapid radiation of Pedicularis, especially in the Himalaya–Hengduan Mountains of south‐western China. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 592–607.  相似文献   

20.
Extra-floral nectaries of nine species of Passiflora were studied with light and electron microscopy prior to and during secretion. There is no evidence of ER or Golgi participation in the secretion of nectar. The vascular tissue supplying the nectary is characterized by companion and phloem parenchyma cells which are usually larger than the sieve elements, a configuration similar to that found in leaf minor veins. In the petiolar nectaries, large masses of membrane-bound protein are commonly found in these cells. This protein is absent in laminar nectaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号