首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Diabetes is known to result in depression of myocardial function, whereas hearts from insulin-treated diabetic rats exhibit functional characteristics similar to controls. In the present study, we have studied the effect of insulin perfusion on cardiac performance of 3-day and 6-week streptozotocin (STZ) diabetic rats. Three days of diabetes did not result in depressed cardiac performance when the hearts were isolated and perfused in the working heart mode. Increasing the concentration of glucose from 5 to 10 mM in the perfusion fluid did not alter the function in either control or in diabetic rat hearts. However, when regular insulin or glucagon-free insulin (Humulin) (5 mU/mL) was included in the perfusion medium, the ventricular function of hearts from control rats was significantly enhanced, while diabetic myocardial function remained unaffected. When the study was repeated on hearts from 6-week diabetic animals, cardiac function of diabetic rats was significantly depressed as compared with controls. As in the 3-day study, contractility was not affected in either group by increasing glucose concentration in the perfusion medium. Again, inclusion of insulin in the medium enhanced cardiac contractility only in control hearts. These results suggest that diabetes results in a loss of myocardial sensitivity to insulin which seems to occur as early as 3 days after induction of diabetes with STZ. The study also demonstrates that the beneficial effects of in vivo insulin treatment on myocardial alterations induced by diabetes are not due to its direct myocardial effects.  相似文献   

2.
Diabetics suffer from an increased incidence of myocardial infarction and are less likely to survive an ischemic insult. Since L-propionylcarnitine (LPC) has been shown to protect against ischemic/reperfusion injury, we hypothesized that LPC may be of even greater benefit to the diabetic heart. Diabetes was induced by i.v. streptozotocin, 60 mg/kg; duration: 12 wks. The chronic effect of LPC was determined by daily i.p. injections (100 mg/kg) for 8 wks. The acute effects of LPC were determined by adding it to the perfusion medium (5 mM) of control and diabetic hearts. Initial cardiac contractile performance of isolated perfused working hearts was assessed by varying left atrial filling pressure. Hearts were then subjected to 90 min of low flow global ischemia followed by 30 min reperfusion. Chronic LPC treatment had no effect on initial cardiac performance in either control or diabetic hearts. Acute addition of LPC to the perfusion medium enhanced pump performance of control hearts, but had no effect in diabetic hearts. Both acute and chronic LPC significantly improved the ability of control and diabetic hearts to recover cardiac contractile performance after ischemia and reperfusion, however, chronic treatment was more effective in diabetic hearts.  相似文献   

3.
The objective of this study was to determine whether a gender difference exists in myosin heavy chain (MHC) isoform or sarcoplasmic reticulum protein levels in diabetic rat hearts. As is the case with normal rodent hearts, all four chambers of the control rat hearts expressed almost 100% MHC-alpha. In 6-wk diabetic rats, MHC-beta expression in ventricles of males was significantly greater (78 +/- 7%) than in females (50 +/- 5%). The cardiac sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) protein level was decreased and the phospholamban (PLB) protein level was increased in the left ventricle of diabetic rats, but there was no difference between male and female diabetic rats. The phosphorylated PLB level was decreased more in male than in female diabetic rats. Insulin treatment completely normalized blood glucose level, cardiac SERCA2a and PLB protein levels, and the decrease in MHC-beta levels in both male and female diabetic rats. Insulin treatment completely normalized serum insulin and almost completely normalized phosphorylation of PLB at serine 16 in male diabetic rats. Although insulin treatment completely normalized serum insulin levels in male diabetic rats, in females it only partially normalized serum insulin levels. Also, insulin treatment almost completely normalized phosphorylation of PLB at threonine 17 in female diabetic rats; however, the increase was significantly greater than that identified for insulin-treated male diabetic rats. We conclude that higher levels of MHC-beta and dephosphorylated PLB may contribute to more contractile dysfunction in male than in female diabetic rat hearts, and that phosphorylation of PLB at threonine 17 is more responsive to insulin in female diabetic rat hearts.  相似文献   

4.
Stimulationg of glucose oxidation by dichloroacetate (DCA) treatment is beneficial during recovery of ischemic hearts from non-diabetic rats. We therfore determined whether DCA treatment of diabetic rat hearts (in which glucose use is extremely low), increases recovery of function of hearts reperfused following ischemia. Isolated working hearts from 6 week streptozotocindiabetic rats were perfused with 11 mM [2-3H/U-14C]glucose, 1.2 mM palmitate, 20 μU/ml insulin, and subjected to 30 min of no flow ischemia followed by 60 min reperfusion. Heart function (expressed as the product of heart rate and peak systolic pressure), prior to ischemia, was depressed in diabetic hearts compared to controls (HR × PSP × 10?3 was 18.2 ± 1 and 24.3 ± 1 beats/mm Hg/min in diabetic and control hearts respectively) but recover to pre-ischemic levels following ischemia, whereas recovery of control of control hearts was significantly decreased (17.8 ± 1 and 11.9 ± 3 beats/mm Hg/min in diabetic and control hearts respectively). This enhanced recovery of diabetic rat hearts occurred even though glucose oxidation during reperfusion was significantly reduced as compared to controls (39 ± 6 and 208 ± 42 nmol/min/g dry wt, in diabetic and control hearts respectively). Glycolytic rate (3G2O production) during reperfusion were similar in diabetic and control hearts (1623 ± 359 and 2071 ± 288 nmol/min/g dry wt, respectively). If DCA (1 mM) was added at reperfusion, hearts from control animals exhibited a significant improvement in function (HR × PSP × 10? recovered to 20 ± 4 beats/mm Hg/min) that was accompanied by a 4-fold increase in glucose oxidation (from 208 ± 42 to 753 ± 111 nmol/min/g dry wt). DCA was without effect on functional recovery of diabetic rat hearts during reperfusion but did significantly increase glucose oxidation from 39 ± 6 to 179 ± 44 nmol/min/g dry wt). These data suggests that, unlike control hearts, low glucose oxidation rates are not an important factor in reperfusion recovery of previouskly ischemic diabetic rat hearts.  相似文献   

5.
Compared with normal hearts, those with pathology (hypertrophy) are less tolerant of metabolic stresses such as ischemia. Pharmacologic intervention administered prior to such stress could provide significant protection. This study determined, firstly, whether the pentose sugar ribose, previously shown to improve postischemic recovery of energy stores and function, protects against ischemia when administered as a pretreatment. Secondly, the efficacy of this same pretreatment protocol was determined in hearts with pathology (hypertrophy). For study 1, Sprague-Dawley rats received equal volumes of either vehicle (bolus i.v. saline) or ribose (100 mg/kg) before global myocardial ischemia. In study 2, spontaneously hypertensive rats (SHR; blood pressure approximately 200/130) with myocardial hypertrophy underwent the same treatment protocol and assessments. In vivo left ventricular function was measured and myocardial metabolites and tolerance to ischemia were assessed. In normal hearts, ribose pretreatment significantly elevated the heart's energy stores (glycogen), and delayed the onset of irreversible ischemic injury by 25%. However, in vivo ventricular relaxation was reduced by 41% in the ribose group. In SHR, ribose pretreatment did not produce significant elevations in the heart's energy or improvements in tolerance to global ischemia, but significantly improved ventricular function (maximal rate of pressure rise (+dP/dt(max)), 25%; normalized contractility ((+dP/dt)/P), 13%) despite no change in hemodynamics. Thus, administration of ribose in advance of global myocardial ischemia does provide metabolic benefit in normal hearts. However, in hypertrophied hearts, ribose did not affect ischemic tolerance but improved ventricular function.  相似文献   

6.
Isolated perfused hearts from diabetic rats exhibit a decreased responsiveness to increasing work loads. However, the precise time point at which functional alterations occur is not clearly established. Previous observations in our laboratory have suggested that the alterations in myocardial function are not apparent at 30 days whereas they are clearly seen 100 days after streptozotocin-induced diabetes. We studied the cardiac function of 6-week diabetic rats using the isolated perfused heart preparation. The 6-week time period was found to be sufficient to cause depression of myocardial function in these animals. We also studied the effect of insulin treatment on myocardial performance of diabetic rats. Insulin treatment was initiated 3 days and 6 weeks after injection of streptozotocin (STZ). The treatment was continued for 6 and 4 weeks in the respective groups. Hearts from 6-week diabetic animals exhibited a depressed left ventricular developed pressure (LVDP) and positive and negative dP/dt at higher filling pressures when compared with 6-week control animals. However, the depression was not seen in the 6-week insulin-treated diabetic animals. Ten-week diabetic rat hearts also showed a depression of LVDP and positive and negative dP/dt when compared with 10-week controls. The group of animals that had been diabetic for 6 weeks and then treated for 4 weeks with insulin exhibited a reversal of the depressed myocardial function. These results demonstrate that depression of myocardial performance, which is evident 6 weeks after diabetes is induced, can be prevented if insulin treatment is initiated as the disease is induced. Further, insulin treatment is capable of reversing the abnormalities after they have occurred.  相似文献   

7.
We investigated mechanical function and exogenous fatty acid oxidation in neonatal pig hearts subjected to ischemia, followed by reperfusion. Isolated, isovolumically-beating hearts, from pigs 12 h to 2 days of age, were perfused with an erythrocyte-enriched (hematocrit approximately 15%) solution (37 degrees C). All hearts were studied for 30 min. with a perfusion pressure of 60 mmHg (pre-ischemia). One group of hearts (low-flow ischemia, N = 12) was then perfused for 30 min. with a perfusion pressure of approximately 12 mmHg. In the other group (no-flow ischemic arrest, N = 9), the perfusion pressure was zero for 30 min. Following ischemia in both groups, the perfusion pressure was restored to 60 mmHg for 40 min. (reperfusion). Pre-ischemia parameters for all hearts averaged: left ventricular peak systolic pressure, 99.0 +/- 2.0 mmHg; end diastolic pressure, 1.9 +/- 0.2 mmHg; coronary flow, 3.4 +/- 0.1 ml/min per g; myocardial oxygen consumption, 56.6 +/- 1.6 microliter/min per g and fatty acid oxidation, 33.4 +/- 1.4 nmol/min per g. During low-flow ischemia, hearts released lactate, and the corresponding parameters decreased to: 30.7 +/- 0.9 mmHg; 1.2 +/- 0.3 mmHg; 0.8 +/- 0.1 ml/min per g; 26.6 +/- 2.3 microliters/min per g and 12.9 +/- 1.1 nmol/min per g, respectively. Early in reperfusion in both groups, all parameters, except for fatty acid oxidation, exceeded pre-ischemia values, before recovering to near pre-ischemia values. Late in reperfusion, however, rates of fatty acid oxidation exceeded pre-ischemia rates by approximately 60%. Thus, the neonatal pig heart demonstrated similar recovery following 30 min of low-flow ischemia or no-flow ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Diabetes mellitus impairs the cardiac kallikrein-kinin system by reducing cardiac kallikrein (KLK) and kininogen levels, a mechanism that may contribute to the deleterious outcome of cardiac ischemia in this disease. We studied left ventricular (LV) function and bradykinin (BK) coronary outflow in buffer-perfused, isolated working hearts (n = 7) of controls and streptozotocin (STZ)-induced diabetic rats before and after global ischemia. With the use of selective kininase inhibitors, the activities of angiotensin I-converting enzyme, aminopeptidase P, and neutral endopeptidase were determined by analyzing the degradation kinetics of exogenously administered BK during sequential coronary passages. Basal LV function and coronary flow were impaired in STZ-induced diabetic rats. Neither basal nor postischemic coronary BK outflow differed between control and diabetic hearts. Reperfusion after 15 min of ischemia induced a peak in coronary BK outflow that was of the same extent and duration in both groups. In diabetic hearts, total cardiac kininase activity was reduced by 41.4% with an unchanged relative kininase contribution compared with controls. In conclusion, despite reduced cardiac KLK synthesis, STZ-induced diabetic hearts are able to maintain kinin liberation under basal and ischemic conditions because of a primary impairment or a secondary downregulation of kinin-degrading enzymes.  相似文献   

9.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

10.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

11.
The aim of this study was to determine whether the transition from insulin resistance to hyperglycemia in a model of type 2 diabetes leads to intrinsic changes in the myocardium that increase the sensitivity to ischemic injury. Hearts from 6-, 12-, and 24-wk-old lean (Control) and obese Zucker diabetic fatty (ZDF) rats were isolated, perfused, and subjected to 30 min of low-flow ischemia (LFI) and 60 min of reperfusion. At 6 wk, ZDF animals were insulin resistant but not hyperglycemic. By 12 wk, the ZDF group was hyperglycemic and became progressively worse by 24 wk. In spontaneously beating hearts rate-pressure product (RPP) was depressed in the ZDF groups compared with age-matched Controls, primarily due to lower heart rate. Pacing significantly increased RPP in all ZDF groups; however, this was accompanied by a significant decrease in left ventricular developed pressure. There was also greater contracture during LFI in the ZDF groups compared with the Control group; surprisingly, however, functional recovery upon reperfusion was significantly higher in the diabetic 12- and 24-wk ZDF groups compared with age-matched Control groups and the 6-wk ZDF group. This improvement in recovery in the ZDF diabetic groups was independent of substrate availability, severity of ischemia, and duration of diabetes. These data demonstrate that, although the development of type 2 diabetes leads to progressive contractile and metabolic abnormalities during normoxia and LFI, it was not associated with increased susceptibility to ischemic injury.  相似文献   

12.
Recirculating organ perfusion in vitro was conducted with hearts from control rats, animals given a single dose of streptozotocin (65 mg/kg) 48 h earlier, and streptozotocin-treated rats administered insulin (5 units), 2 h prior to organ perfusion. During 45-min perfusions, the lipolysis of very low density lipoprotein (VLDL) triglyceride was significantly less in hearts from diabetics than in controls (41.9 +/- 7.3% of control). This was associated with significant reductions in heparin-releasable (functional) lipoprotein lipase and tissue lipoprotein lipase of perfused hearts. The decreases in VLDL triglyceride metabolism and the levels of myocardial lipoprotein lipase were completely reversed by treatment of diabetic rats with insulin 2 h prior to study. Similar improvement of VLDL triglyceride metabolism and increases in myocardial lipoprotein lipase activity were observed in hearts from diabetic rats by direct addition of 100 milliunits/ml of insulin to the recirculating perfusion media. Under these conditions, the increase in both fractions of lipoprotein lipase in response to insulin was completely inhibited, and utilization of VLDL triglyceride was partially inhibited by pre-perfusion with cycloheximide for 10 min. The data derived from either VLDL triglyceride lipolysis in organ perfusion or direct measurement of myocardial lipoprotein lipase demonstrate a direct effect of insulin on myocardial lipoprotein lipase activity, and suggest that the response to insulin may be due in part to effects on protein synthesis.  相似文献   

13.
Ha KC  Piao CS  Chae HJ  Kim HR  Chae SW 《Regulatory peptides》2006,133(1-3):13-19
The present study used isolated rat hearts to investigate whether (1) Dendroaspis natriuretic peptide (DNP) is protective against post-ischemic myocardial dysfunction, and (2) whether the cardioprotective effects of DNP is related to alteration of Bcl-2 family protein levels. The excised hearts of Sprague-Dawley rats were perfused on a Langendorff apparatus with Krebs-Henseleit solution with a gas mixture of 95% O2 and 5% CO2. Left ventricular end-diastolic pressure (LVEDP, mmHg), left ventricular developed pressure (LVDP, mmHg) and coronary flow (CF, ml/min) were continuously monitored. In the presence of 50 nM DNP, all hearts were perfused for a total of 100 min consisting of a 20 min pre-ischemic period followed by a 30 min global ischemia and 50 min reperfusion. Lactate dehydrogenase (LDH) activity in the effluent was measured during reperfusion. Treatment with DNP alone improved the pre-ischemic LVEDP and post-ischemic LVEDP significantly comparing with the untreated control hearts during reperfusion. However, DNP did not affect the LVDP, heart rate (HR, beats/min), and CF. Bcl-2, an anti-apoptotic protein expressed in ischemic myocardium of DNP+ischemia/reperfusion (I/R) group, was higher than that in I/R alone group. Bax, a pro-apoptotic protein expressed in ischemic myocardium of DNP+I/R group, has no significant difference compared with I/R alone group. These results suggest that the protective effects of DNP against I/R injury would be mediated, at least in part, through the increased ratio of Bcl-2 to Bax protein after ischemia-reperfusion.  相似文献   

14.
L. Wu  H. Qiao  Y. Li  L. Li   《Phytomedicine》2007,14(10):652-658
Ischemic heart diseases have been the leading cause of death in both developed and developing countries over the past decades. The aim of this study was to investigate the cardioprotective effects of the complex preparation (called Shenge), made of puerarin (isolated from Pueraria lobata Ohwi., also called Kudzu) and Danshensu (isolated from the Chinese herb, Salvia miltiorrhiza), on acute ischemic myocardial injury in rats and its underlying mechanisms. The left anterior descending (LAD) coronary artery was occluded to induce myocardial ischemia in the hearts of SD rats. Shenge was injected into the tail vein 15 min after occlusion at doses of 0, 30, 60, or 120 mg/kg body wt. ST elevation was then measured at 60, 120, and 240 min after Shenge administration. The ischemic size, serum levels of creatine kinase isoenzyme-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA), and ST elevation were measured after the rats were sacrificed. Shenge decreased ST elevation induced by acute myocardial ischemia, reduced ischemic size, serum levels of CK-MB, LDH and MDA, and increased serum activity of SOD in a dose-dependent manner. The combined use of puerarin and Danshensu at a ratio of 1:1 showed the most effective activity. In conclusion, Shenge exerts significant cardioprotective effects against acute ischemic myocardial injury in rats, likely through its antioxidant and anti-lipid peroxidation properties, and thus may be an effective and promising medicine for both prophylaxis and treatment of ischemic heart disease.  相似文献   

15.
Six hours after insulin treatment, hearts express heat shock protein 70 (Hsp70) and have improved contractile function after ischemia-reperfusion injury. In this study we examined hearts 1 h after insulin treatment for contractile function and for expression of Hsp70 and Hsp27. Adult, male Sprague-Dawley rats were assigned to groups: 1) sham, 2) control, 3) insulin injected (200 microU/g body wt), 4) heat shock treated (core body temperature, 42 degrees C for 15 min), and 5) heat shock and insulin treated. At 1 h after these treatments, hearts were isolated, equilibrated to Langendorff perfusion for 30 min, and then subjected for 30 min no-flow global ischemia (37 degrees C) followed by 2 h of reperfusion. Insulin-treated hearts had significantly increased contractile function compared with control hearts. At 1 h after insulin treatment, a minimal change in Hsp70 and Hsp27 content were detected. By 3 h after insulin treatment, a significant increase in Hsp70, but not Hsp27, was detected by Western blot analysis. By immunofluorescence, minimal Hsp70 was detected in insulin-treated hearts, whereas Hsp27 was detected in all hearts, indicative of its constitutive expression. Phosphospecific isoforms of Hsp27 were detected in insulin-, heat shock-, and heat shock and insulin-treated hearts. After ischemia and reperfusion, the insulin-treated hearts had significantly elevated levels of phosphorylated Hsp27. Inhibition of p38 MAPK with SB-203580 blocked the insulin-induced phosphorylation of Hsp27 and the improved functional recovery. In conclusion, insulin induces an apparent rapid phosphorylation of Hsp27 that is associated with improved functional recovery after ischemia-reperfusion injury.  相似文献   

16.
Structural remodeling during acute myocardial infarction affects ventricular wall stress and strain. To see whether acute myocardial infarction alters residual stress and strain in the left ventricle (LV), we measured opening angles in rat hearts after 30 minutes of left coronary artery occlusion. The mean opening angle in 18 ischemic hearts (51 +/- 20 deg) was significantly greater than in five sham-operated controls (29 +/- 11 deg, P < 0.05). To determine whether these alterations in residual strain may be associated with strain softening caused by systolic overstretch of the noncontracting ischemic tissue, we also measured opening angles in isolated hearts that had been passively inflated to high LV pressures (120 mmHg). The mean opening angle of the strain-softened hearts was not significantly different from the sham-operated hearts (34 +/- 27 deg, P = 0.74). Mean collagen area fractions in the myocardium were not significantly different between ischemic hearts (0.027 +/- 0.014) and the nonischemic group (0.022 +/- 0.011). Although there were significant differences in opening angles measured with ischemia, they do not appear to be a result of altered extracellular collagen content or softening associated with overstretch. Thus, there is a significant change in residual strain associated with acute ischemia that may be related to changes in collagen fiber structure, myocyte structure, or metabolic state.  相似文献   

17.
Endogenous glycogen stores are essential to maintain cell functions during myocardial ischemia.. Fasting and L-glutamate improve left ventricular function after an ischemic episode. We studied their effects on myocardial glycogen depletion during ischemia and on left ventricular function and glycogen resynthesis during reperfusion. We allocated 185 Wistar rats to 4 groups: 1) Control, 2) Fasting, 16-20 hours (Fast) 3) L-glutamate supplementation [100 mM] (Glt) or 4) Fasting + L-glutamate supplementation [100 mM]. n = 8-10 in each group. Hearts were mounted in an isolated perfused rat hearts model for 20 min stabilisation, 10/20/30 min ischemia and 60 min reperfusion. At each time point hearts were frozen in liquid nitrogen (-196 degrees C) within 2 seconds and myocardial contents of glycogen, lactate, alanine and glutamate were determined. Left ventricular pressure was measured continuously. Fasting and L-glutamate supplementation improved LV function after ischemia (Fast: p < 0.05, Glt: p < 0.01) and delayed myocardial glycogen depletion (Fast: p < 0.05, Glt: p < 0.01) compared to control. Decreased lactate accumulation and increased alanine content during ischemia were found in fasted (lactate: p < 0.05, alanine: p < 0.05) and L-glutamate supplemented (lactate: p < 0.01, alanine: p < 0.01) hearts compared to control. We did not find any additive effects of fasting and L-glutamate supplementation. In conclusion fasting and L-glutamate supplementation improve left ventricular function during reperfusion and delay myocardial glycogen depletion during ischemia. There were no additive effects of Fasting and L-glutamate supplementation. These finding suggest common metabolic pathways underlying the effects of L-glutamate supplementation and fasting.  相似文献   

18.
Cardiovascular disease is one of the most important causes of morbidity and mortality in diabetes mellitus, but there has been controversy over functional impairment of diabetic hearts and their tolerance to ischemia. We studied ischemic heart function in type 2 diabetic rats with different degrees of hyperglycemia and its relationship with cardiac norepinephrine release. Otsuka Long-Evans Tokushima Fatty rats (OLETF) and age-matched Long-Evans Tokushima Otsuka normal rats (LETO) were used. One group of OLETF rats was given 30% sucrose in drinking water (OLETF-S). Hearts were isolated and perfused in a working heart preparation and subjected to 30 min ischemia followed by 40 min reperfusion at age of 12 months. Hemodynamics and coronary norepinephrine overflow were examined. Fasting plasma glucose in OLETF increased markedly at 12 months and sucrose administration exacerbated hyperglycemia in diabetic rats (LETO 6.6 +/- 0.5, OLETF 8.3 +/- 0.7, OLETF-S 15.0 +/- 1.7 mmol/L, P < 0.01). Basic cardiac output in OLETF was decreased as compared with LETO and OLETF-S (LETO 29.4 +/- 2.5, OLETF 24.0 +/- 2.4, OLETF-S 27.0 +/- 0.9 ml/min/g, P < 0.05) and remained very low after ischemia, while in OLETF-S it was well preserved (OLETF 4.2 +/- 2.1, OLETF-S 13.7 +/- 2.6 ml/min/g, P < 0.01). Correspondently, cardiac norepinephrine released during ischemia and reperfusion was lower in OLETF-S (OLETF 2.3 +/- 1.0, OLETF-S 0.7 +/- 0.1 pmol/ml, P < 0.01). Thus, OLETF hearts were more vulnerable to ischemia but sucrose feeding rendered their hearts resistant to ischemia. Less norepinephrine release may play a role in preventing postischemic functional deterioration in sucrose-fed diabetic hearts.  相似文献   

19.
Pre-diabetic subjects with high insulin secretory capacity have double risk of cardiovascular disease compared with subjects who do not develop insulin-resistance. It is well established that the ability of the myocardium to increase its glycolytic ATP production plays a crucial role in determining cell survival under conditions of ischemia. Up to now, whether the pre-diabetic state reduces the tolerance of the heart to ischemia by affecting its ability to increase its energy production through glycolysis remains unknown. The aim of the present study was to assess whether insulin resistance affects the ability of the myocardium to increase glycolysis under ischemic conditions. Male Wistar rats were fed for 8 weeks a fructose-enriched (33%) diet to induce a pre-diabetic state. Hearts were isolated and subjected to ex-vivo low-flow (2%) ischemia for 30 min. The fructose diet increased sarcolemmal GLUT4 localisation in myocardial cells under basal conditions compared with controls. This effect was not accompanied by increased glucose utilisation. Ischemia induced the translocation of GLUT4 to the plasma membrane in controls but did not significantly modify the distribution of these transporters in pre-diabetic hearts. Glycolytic flux under ischemic conditions was significantly lower in fructose-fed rat hearts compared with controls. The reduction of glycolytic flux during ischemia in fructose-fed rat hearts was not due to metabolic inhibition downstream hexokinase II since no cardiac accumulation of glucose-6-phosphate was detected. In conclusion, our results suggest that the pre-diabetic state reduces the tolerance of the myocardium to ischemia by decreasing glycolytic flux adaptation.  相似文献   

20.
Adaptation of myocardial energy substrate utilization may contribute to the cardioprotective effects of regular exercise, a possibility supported by evidence showing that pharmacological metabolic modulation is beneficial to ischemic hearts during reperfusion. Thus we tested the hypothesis that the beneficial effect of regular physical exercise on recovery from ischemia-reperfusion is associated with a protective metabolic phenotype. Function, glycolysis, and oxidation of glucose, lactate, and palmitate were measured in isolated working hearts from sedentary control (C) and treadmill-trained (T: 10 wk, 4 days/wk) female Sprague-Dawley rats submitted to 20 min ischemia and 40 min reperfusion. Training resulted in myocardial hypertrophy (1.65 +/- 0.05 vs. 1.30 +/- 0.03 g heart wet wt, P < 0.001) and improved recovery of function after ischemia by nearly 50% (P < 0.05). Glycolysis was 25-30% lower in T hearts before and after ischemia (P < 0.05), whereas rates of glucose oxidation were 45% higher before ischemia (P < 0.01). As a result, the fraction of glucose oxidized before and after ischemia was, respectively, twofold and 25% greater in T hearts (P < 0.05). Palmitate oxidation was 50-65% greater in T than in C before and after ischemia (P < 0.05), whereas lactate oxidation did not differ between groups. Alteration in content of selected enzymes and proteins, as assessed by immunoblot analysis, could not account for the reduction in glycolysis or increase in glucose and palmitate oxidation observed. Combined with the studies on the beneficial effect of pharmacological modulation of energy metabolism, the present results provide support for a role of metabolic adaptations in protecting the trained heart against ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号