共查询到20条相似文献,搜索用时 15 毫秒
1.
Ikuta K Srinivas SK Schacker T Miyagi J Scott RS Sixbey JW 《Journal of virology》2008,82(23):11516-11525
Deletions and rearrangements in the genome of Epstein-Barr virus (EBV) strain P3HR-1 generate subgenomic infectious particles that, unlike defective interfering particles in other viral systems, enhance rather than restrict EBV replication in vitro. Reports of comparable heterogeneous (het) DNA in EBV-linked human diseases, based on detection of an abnormal juxtaposition of EBV DNA fragments BamHI W and BamHI Z that disrupts viral latency, prompted us to determine at the nucleotide level all remaining recombination joints formed by the four constituent segments of P3HR-1-derived het DNA. Guided by endonuclease restriction maps, we chose PCR primer pairs that approximated and framed junctions creating the unique BamHI M/B1 and E/S fusion fragments. Sequencing of PCR products revealed points of recombination that lacked regions of extensive homology between constituent fragments. Identical recombination junctions were detected by PCR in EBV-positive salivary samples from human immunodeficiency virus-infected donors, although the W/Z rearrangement that induces EBV reactivation was frequently found in the absence of the other two. In vitro infection of lymphoid cells similarly indicated that not all three het DNA rearrangements need to reside on a composite molecule. These results connote a precision in the recombination process that dictates both composition and regulation of gene segments altered by genomic rearrangement. Moreover, the apparent frequency of het DNA at sites of EBV replication in vivo is consistent with a likely contribution to the pathogenesis of EBV reactivation. 相似文献
2.
Palindromic structure and polypeptide expression of 36 kilobase pairs of heterogeneous Epstein-Barr virus (P3HR-1) DNA. 总被引:5,自引:4,他引:5 下载免费PDF全文
Among the Epstein-Barr virions (EBV) produced by the P3HR-1 (HR-1) cell line are a defective subpopulation with rearranged viral DNA designated heterogeneous DNA (het DNA). These defective virions are responsible for the capacity of HR-1 virus to induce early antigen in Raji c cells and for trans activation of latent EBV in X50-7 cells. Virions with het DNA are independent replicons which pass horizontally from cell to cell rather than being partitioned vertically. We analyzed the structure and defined several polypeptide products of het DNA to understand these remarkable biologic properties. A 36-kilobase-pair (kbp) stretch of het DNA was cloned (as two EcoRI fragments of 20 and 16 kbp) from virions released from a cellular subclone of HR-1 cells. The unusual aspect of the 20-kbp fragment was the linkage of sequences of BamHI-M and BamHI-B', which are not adjacent on the standard EBV genome. The 16-kbp fragment was a palindrome in which at least two additional recombinations on each side of the palindrome had linked regions of the standard EBV genome which are not normally contiguous. The 20-kbp het DNA fragment was attached to at least one and possibly both ends of the 16-kbp het DNA fragment. We identified antigenic polypeptides produced in COS-1 cells after gene transfer of various cloned het DNA fragments. The 20-kbp fragment encoded a cytoplasmic antigen of about 95 kilodaltons (kDa). The 16-kbp fragment encoded antigens located in the nucleus, nuclear membrane, and cytoplasm. These were represented by several polypeptides, the most prominent of which were about 55, 52, and 36 kDa. The 36-kDa polypeptide was localized to a 2.7-kbp BamHI fragment which had homology to standard BamHI-W and BamHI-Z. Another polypeptide of 50 kDa found in the nucleus was mapped to the 7.1-kbp BamHI het DNA fragment which spans the EcoRI site linking the 20- and 16-kbp fragments of het DNA. Thus, HR-1 het DNA encodes several discrete polypeptide products, one or more of which could be responsible for the unusual biologic properties of the virus. The composition, regulation, and ultimately the expression of some of these products relative to standard EBV is probably altered by the genomic rearrangements of het DNA. 相似文献
3.
P3HR-1 Epstein-Barr virus with heterogeneous DNA is an independent replicon maintained by cell-to-cell spread. 总被引:4,自引:11,他引:4 下载免费PDF全文
We present results of biological experiments which indicate that the subpopulation of Epstein-Barr virus strain P3HR-1 with heterogeneous (het) DNA consists of self-contained replicons which multiply alongside, but independently of, Epstein-Barr virus strain HR-1 containing standard DNA. When a population of HR-1 virions containing het DNA was introduced into X50-7 cells, the input heterogeneous DNA increased in abundance, as did the DNA of the endogenous virus of X50-7 cells. The input standard HR-1 viral DNA, however, was not amplified. When parental HR-1 cells or a cellular subclone containing het DNA were grown for several weeks in the presence of human serum with neutralizing antibody, the het DNA was lost from the culture; standard HR-1 DNA, however, was not affected by antiserum. Furthermore, virions containing het DNA could be serially propagated through cellular subclones of HR-1 cells which lack het DNA. After each serial passage, cells which acquired het DNA released virions with the ability to induce early antigens in Raji cells. These experiments define a novel in vitro life cycle of an Epstein-Barr virus variant which is maintained, not vertically by partitioning to daughter cells in cell division, but horizontally by cell-to-cell spread. 相似文献
4.
B Kallin L Sterns A K Saemundssen J Luka H Jrnvall B Eriksson P Z Tao M T Nilsson G Klein 《Journal of virology》1985,54(2):561-568
The Epstein-Barr virus DNA polymerase was purified from extracts of P3HR-1 cells treated with n-butyrate for induction of the viral cycle. Sequential chromatography on DNA cellulose, phosphocellulose, and blue Sepharose yielded an enzyme preparation purified more than 1,300-fold. The purified enzyme was distinct from cellular enzymes but resembled the viral DNA polymerase in cells infected with herpes simplex virus type 1 or 2. The active enzyme had an apparent molecular weight of 185,000 as estimated by gel filtration on Sephacryl S-300. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major polypeptide corresponding to a molecular weight of ca. 110,000. This polypeptide correlated with the catalytic function of the purified enzyme, whereas the other, less abundant polypeptides did not. By immunoblotting, the 110,000-molecular-weight polypeptide could be identified as a viral polypeptide. It could not be determined whether the native enzyme was composed of more than one polypeptide. 相似文献
5.
The aim of the study was to characterize Raji, P3HR-1 and Namalwa cell lines in the aspect of their usefulness for the research on virus Epstein-Barr (EBV) reactivation, with the participation of Toll-like receptors (TLR). During a 12-day experiment, optimal conditions of cultivation (RPMI with 10% FCS at 37 degrees C in 5% CO2) were determined. In these conditions cells showed logarithmic growth. The presence of the DNA EBV was confirmed by the PCR method, showing that 12-day long maintenance of cells does not cause the loss of the virus. The presence of genes encoding TLR2, TLR3 and TLR4 was also confirmed by PCR. The TLRs expression at the mRNA level in cells subjected to 24h stimulation with TLR2, TLR3 and TLR4 agonist (Pam3CSK4, Poly(I:C) and LPS, respectively) was determined by the RT PCR method. The presence ofTLR4 mRNA was confirmed in the case of Namalwa cells stimulated by Pam3CSK and LPS, and P3HR cells stimulated by Pam3CSK4. In the case of Raji cells the expression of none of the receptors was confirmed at the mRNA level in cells with and without stimulation. 相似文献
6.
Structure of defective DNA molecules in Epstein-Barr virus preparations from P3HR-1 cells. 总被引:5,自引:17,他引:5 下载免费PDF全文
Epstein-Barr virus (EBV), isolated from P3HR-1 cells, induces early antigen and viral capsid antigen upon infection of human B-lymphoblasts. The strong early antigen- and viral capsid antigen-inducing activity is only observed in P3HR-1 virus preparations harboring particles with defective genomes, suggesting that this biological activity is directly associated with the defective DNA population. After infection of EBV genome-carrying Raji or EBV genome-negative BJAB cells, defective genomes of P3HR-1 EBV DNA are replicated in excess, depending on the multiplicity of infecting EBV particles. Hybridization of the DNA from such infected cells with 32P-labeled EBV DNA after HindIII cleavage reveals six hypermolar fragments. Mapping of these fragments shows that they form one defective genome unit containing four nonadjacent regions (alpha, beta, gamma, and delta) of the nondefective P3HR-1 EBV DNA. Two of the segments (alpha and beta) contain ca. 17 and 13 megadaltons, respectively, from the terminal regions of the P3HR-1 genome, whereas the two smaller segments (gamma and delta) contain ca. 3.7 and 3.0 megadaltons, respectively, originating from the central portion of the genome. In the defective molecule, the regions gamma and delta are present in the opposite orientation compared with nondefective P3HR-1 EBV DNA. Tandem concatemers are formed by fusion of the alpha and beta regions. Our model suggests that tandem concatemers of three defective genome units can be packaged into virions in P3HR-1 cells. 相似文献
7.
Epstein-Barr virus DNA. X. Direct repeat within the internal direct repeat of Epstein-Barr virus DNA. 总被引:1,自引:7,他引:1 下载免费PDF全文
The 3,360-base-pair internal direct repeat (IR) in Epstein-Barr virus DNA separates the short and long unique DNA domains. IR has a single BamHI site. The juncture between the short unique domain and IR has been mapped by restriction endonucleases and is less than 2,600 nucleotides before the BamHI site in IR. The junction between IR and the long unique domain has been sequenced and is approximately 650 nucleotides after the BamHI site in IR. Thus, relative to the start of IR at the juncture with the short unique domain, the last repeat is at least 90 base pairs short of being complete. There is homology between the 250-nucleotide fragments to the left and the right of the unique BamHI site in IR. A 35-base-pair sequence of the left fragment is directly repeated within the right fragment, once fully and once partially. The implications of these findings are discussed. 相似文献
8.
Epstein-Barr virus DNA XII. A variable region of the Epstein-Barr virus genome is included in the P3HR-1 deletion. 总被引:10,自引:26,他引:10 下载免费PDF全文
The P3HR-1 subclone of Jijoye differs from Jijoye and from other Epstein-Barr virus (EBV)-infected cell lines in that the virus produced by P3HR-1 cultures lacks the ability to growth-transform normal B lymphocytes (Heston et al., Nature (London) 295:160-163, 1982; Miller et al., J. Virol. 18:1071-1080, 1976; Miller et al., Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974; Ragona et al., Virology 101:553-557, 1980). The P3HR-1 virus was known to be deleted for a region which encodes RNA in latently infected, growth-transformed cells (Bornkamm et al., J. Virol. 35:603-618, 1980; Heller et al., J. Virol. 38:632-648, 1981; King et al., J. Virol. 36:506-518, 1980; Raab-Traub et al., J. Virol. 27:388-398, 1978; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934, 1980). This deletion is now more precisely defined. The P3HR-1 genome contains less than 170 base pairs (and possibly none) of the 3,300-base pair U2 region of EBV DNA and is also lacking IR2 (a 123-base pair repeat which is the right boundary of U2). A surprising finding is that EBV isolates vary in part of the U2 region. Two transforming EB viruses, AG876 and Jijoye, are deleted for part of the U2 region including most or all of a fragment, HinfI-c, which encodes part of one of the three more abundant cytoplasmic polyadenylated RNAs of growth-transformed cells (King et al., J. Virol. 36:506-518, 1980; King et al., J. Virol. 38:649-660, 1981; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934). 相似文献
9.
10.
Deleted, rearranged, heterogeneous (het) Epstein-Barr virus (EBV) DNA with the distinctive capability of disrupting EBV latency has been reported in biopsy samples of EBV-associated tumors whose onset in immunocompetent hosts is characteristically preceded by an antibody response indicative of EBV reactivation. Using the EBV P3HR-1 strain, we have reproduced in long-term culture of SVK epithelial cells an unusual pattern of infection previously observed in a subset of tumor biopsy samples: the persistence of het DNA in the absence of the parental helper virus. Fluorescence in situ hybridization (FISH) of infected cell subclones indicated the retention of het DNA in an integrated form. Incorporation of an intact het DNA molecule was confirmed by PCR, using primers that framed junctions of the four rearranged EBV DNA segments comprising P3HR-1-derived het DNA. Structural analysis of EBV terminal repeats revealed a banding pattern consistent with the integration of het DNA as a concatemer. Linkage of concatemeric monomers was defined at a nucleotide level, and that junctional sequence was detected in cell-free P3HR-1 virion DNA, confirming that subgenomic het DNA was packaged into infectious particles in a concatemeric configuration. Stable integration into cells having lost the standard viral genome allowed the unambiguous designation of het DNA as the source for viral gene products potentially encoded by both. Continuous expression of the latency-to-lytic switch protein Zta and detection of the BALF4 gene product gB, known to expand the target cell range of standard virus when incorporated at augmented levels into infectious progeny, add to a presumption of het DNA-enhanced pathogenesis in diseases of EBV reactivation. 相似文献
11.
Inhibition of Epstein-Barr virus (EBV) release from P3HR-1 and B95-8 cell lines by monoclonal antibodies to EBV membrane antigen gp350/220. 总被引:1,自引:0,他引:1 下载免费PDF全文
T Sairenji G Bertoni M M Medveczky P G Medveczky Q V Nguyen R E Humphreys 《Journal of virology》1988,62(8):2614-2621
Antibody-mediated inhibition of Epstein-Barr virus (EBV) release from the EBV-productive cell lines P3HR-1 and B95-8 was probed with two monoclonal antibodies (MAbs), 72A1 and 2L10, which immunoprecipitated the same EBV membrane antigen (MA) gp350/220 found with the 1B6 MAb with which inhibition of EBV release from P3HR-1 cells was first described. These three MAbs were not equivalent in either MA reactivities or functional effects, reflecting the variable expression of different epitopes of gp350/220. 1B6 recognized MA on P3HR-1 cells, which expressed predominately the gp220 form of MA. 1B6 did not recognize (or barely recognized) a determinant on B95-8 cells. MAbs 2L10 and 72A1 reacted as well with B95-8 cells as they did with P3HR-1 cells. MAbs 1B6 and 2L10 neutralized neither P3HR-1 nor B95-8 virus, but 72A1 neutralized both viruses. MAbs 1B6 and 72A1 inhibited P3HR-1 virus release, as measured by the assay for infectious virus and by DNA hybridization analysis of released virus, but 2L10 had no such activity. 72A1 (but not 1B6) inhibited release of EBV from B95-8 cells. These experiments pointed to the presence of three different epitopes on gp350/220, identified with the respective MAbs and having varying involvement in virus neutralization and virus release inhibition. 相似文献
12.
Deletion of the Nontransforming Epstein-Barr Virus Strain P3HR-1 Causes Fusion of the Large Internal Repeat to the DSL Region 总被引:18,自引:29,他引:18 下载免费PDF全文
The nontransforming Epstein-Barr virus (EBV) strain P3HR-1 is known to have a deletion of sequences of the long unique region adjacent to the large internal repeats. The deleted region is believed to be required for initiation of transformation. To establish a more detailed map of the deletion in P3HR-1 virus, SalI-A of the transforming strain M-ABA and of P3HR-1 virus was cloned into the cosmid vector pHC79 and multiplied in Escherichia coli. The cleavage sites for BamHI, BglII, EcoRI, PstI, SacI, SacII, and XhoI were determined in the recombinant plasmid clones. Analysis of the boundary between large internal repeats and the long unique region showed that in M-ABA (EBV) the transition is different from that in B95-8 virus. The map established for SalI-A of P3HR-1 virus revealed that, in contrast to previous reports, the deletion has a size of 6.5 kilobase pairs. It involves the junction between large internal repeats and the long unique region and includes more than half of the rightmost large internal repeat. The site of the deletion in the long unique region is located between a SacI and a SacII site, about 200 base pairs apart from each other. The sequences neighboring the deletion in the long unique region showed homology to the nonrepeated sequences of the DS(R) (duplicated sequence, right) region. Sequences of the large internal repeat are thus fused to sequences of the DS(L) (duplicated sequence, left) region in P3HR-1 virus DNA under elimination of the DS(L) repeats. Jijoye, the parental Burkitt lymphoma cell line from which the P3HR-1 line is derived by single-cell cloning, is known to produce a transforming virus. Analysis of the Jijoye (EBV) genome with cloned M-ABA (EBV) probes specific for the sequences missing in P3HR-1 virus revealed that the sequences of M-ABA (EBV) BamHI-H2 are not represented in Jijoye (EBV). In Jijoye (EBV) the complete DS(L) region including the DS(L) repeats is, however, conserved. Further analysis of Jijoye (EBV) and of Jijoye virustransformed cell lines will be helpful to narrow down the region required for transformation. 相似文献
13.
The expression of novel antigens from the Epstein-Barr virus large internal repeat. 总被引:1,自引:0,他引:1 下载免费PDF全文
A large Epstein-Barr virus (EBV) B95-8 genomic bank has been prepared in an Escherichia coli expression vector and screened with a pool of sera from human infectious mononucleosis patients. Four immunopositive clones which also contained sequences from the viral large internal repeat were selected. DNA sequence analysis has located them on the repeat sequence and shown that they come from three potential open reading frames and that two of them consist of overlapping reading frames. This must imply extensive intron/exon splicing or that the repeat itself encodes several different proteins. The four expressed epitopes were shown to be present simultaneously in independent cases of infectious mononucleosis. These have not been previously described and based on the experimental design, they must reflect the situation in vivo. 相似文献
14.
15.
trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. 总被引:19,自引:37,他引:19 下载免费PDF全文
Transfection of Epstein-Barr virus (EBV)-nonproducer Raji cells with the BamHI Z fragment of EBV DNA induced antigens that were detected with human antiserum against EBV-specific early antigens. Northern blot analysis of transfected cells revealed that one intense RNA band hybridized with the BamHI H and F fragments but not with the BamHI Z fragment. Cooperation between the BamHI H, F, and BamHI Z regions was also confirmed in baby hamster kidney cells that were cotransfected with both fragments. These results indicate that the transfected BamHI Z fragment of EBV DNA induces a trans-acting factor which activates the gene expression of the BamHI H and F region and that the BamHI Z region possibly plays an important role in the latency of EBV. 相似文献
16.
Amplification of Epstein-Barr virus (EBV) DNA by superinfection with a strain of EBV derived from nasopharyngeal carcinoma. 下载免费PDF全文
Epstein-Barr virus (EBV) from a nasopharyngeal carcinoma (NPC) hybrid cell line (NPC-KT) lacking defective viral DNA molecules superinfected Raji cells and induced EBV early antigens (EA), as did virus from P3HR-1 cells, which contained defective molecules. The EBV polypeptides induced by NPC-KT appeared to be identical to those induced by P3HR-1 virus. The ability of NPC-KT virus to induce EA was enhanced more than 10-fold by treatment of superinfected cells with dimethyl sulfoxide; however, dimethyl sulfoxide treatment did not enhance superinfection by P3HR-1 virus. After infection, DNA synthesis of both the superinfecting NPC-KT virus and the resident Raji viral genome was induced. In addition to amplified Raji EBV episomal DNA, a fused terminal fragment of NPC-KT viral DNA was detected. The detection of fused terminal DNA fragments suggests that the superinfecting virion DNA either circularizes or polymerizes after superinfection and is possibly amplified through circular or concatenated replicative intermediates. 相似文献
17.
Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. 总被引:8,自引:0,他引:8 下载免费PDF全文
Sodium butyrate induces the Epstein-Barr virus cycle in latently infected P3HR-1 cells with a high efficiency. This fact was utilized for the metabolic labeling of the Epstein-Barr virus antigens. Nonproducer Raji cells, lacking both early antigen and viral capsid antigen, were used as controls. Immunoprecipitation patterns were compared with 13 anti-Epstein-Barr virus (viral capsid antigen) - positive and 3 negative sera. Sixteen polypeptides were identified as being associated with the lytic Epstein-Barr virus cycle. Their molecular weights ranged from 31,000 (31K) to 275K on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two polypeptides, 158K and 165K, could be classified as late viral products on the basis of their sensitivity to cytosine arabinoside. Six of the polypeptides, i.e., 90K, 95K, 134K, 165K, 236K, and 275K, were detected by [(3)H]glucosamine labeling. Among the early, cytosine arabinoside-insensitive polypeptides detected by [(35)S]methionine labeling, a 152K component appears to be a major constituent of early antigen. This polypeptide was precipitated by all anti-Epstein-Barr virus-positive sera tested. As a rule, together with the 103K and 134K polypeptides, the 152K component is precipitated by anti-early antigen, R (restricted) antibodies. In addition, anti-early antigen D (diffuse) antibodies precipitate 31K, 51K, 65K, and 90K components. 相似文献
18.
Background
Studies examining herpesvirus-herpesvirus (cytomegalovirus (CMV)-Epstein-Barr virus (EBV)) interactions are limited, and many of the studies have been clinical observations suggesting such an interaction exists. This report aims to examine the in vitro susceptibilities of BJAB-B1 and P3HR-1 cells (EBV positive Burkitt's lymphoma B-cell lines) to a CMV superinfection; and show that EBV reactivation occurs after CMV superinfects these cell lines. 相似文献19.
In situ hybridization was used to detect Epstein-Barr virus (EBV) DNA sequences under conditions where the virus DNA is replicating spontaneously and where it is induced to do so following superinfection. The in situ reaction itself is influenced by several parameters, analogous to conventional nucleic acid hybridization, consideration of which should help to optimize the designing of in situ hybridization reactions in general. Both EBV complementary RNA (cRNA) and EBV DNA synthesized in vitro can efficiently detect the virus DNA sequences in situ. The findings presented here can therefore be utilized in both the study of EBV-cell interactions and, more generally, in studies using in situ hybridization as a general approach. 相似文献