首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of in vivo expression of the polysialosyl (K1) capsular antigen in Escherichia coli has been studied. Growth of E. coli K1 strains at 15 degrees C prevents K1 polysaccharide synthesis (F. A. Troy and M. A. McCloskey, J. Biol. Chem. 254:7377-7387, 1979). Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C. The early expression and resultant morphology of K1 capsular antigen was monitored in temperature upshift experiments by using electron microscopy. Morphological stabilization of the capsule was achieved by treatment of cells with an antiserum specific for the alpha, 2-8-linked polysialosyl antigen. The kinetics of K1 capsule expression in growing cells was measured by bacteriophage adsorption with phage K1F, which required the K1 capsule for binding. The results of temperature upshift experiments showed that capsule first appeared on the cell surface after 10 min. Subsequent bacteriophage binding increased linearly with time until a fully encapsulated state was reached 45 min after upshift. The initiation of K1 capsule appearance was dependent on protein synthesis and the addition of chloramphenicol before temperature upshift prevented any expression of the K1 antigen. Chloramphenicol reduced the rate of K1 synthesis when added after temperature upshift. We conclude from these results that protein synthesis is a prerequisite for activation of capsule expression in vivo, but not for subsequent elongation of polysialosyl chains.  相似文献   

2.
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.  相似文献   

3.
The temperature-regulated expression of capsular group II polysaccharides of Escherichia coli (B. Jann and K. Jann, (1990) Curr. Top. Microbiol. Immunol. 150: 19-42) depends on an elevated concentration of CMP-KDO, as evidenced by an increased activity of CMP-KDO synthetase. The increase in activity of CMP-KDO synthetase is observed only in cytoplasmic fractions of bacteria which had been grown at 37 degrees C but not after growth at 18 degrees C. The activity of CMP-KDO synthetase thus parallels the activity of the (membrane-associated) system synthesizing capsules of group II in E. coli. No such dependence of capsule expression on CMP-KDO was observed with E. coli with capsules of group I. A number of E. coli strains with capsular polysaccharides, which on the basis of genetic determination and chemical characteristics are considered as group II capsules, show no temperature regulation of their capsules and do not depend on an elevated CMP-KDO concentration for capsule expression. The capsular polysaccharides of these E. coli strains, which possibly represent a new group of E. coli capsules are tentatively classified as group I/II.  相似文献   

4.
Growth of Escherichia coli K1 strains at 15 degrees C results in a defect in the synthesis or assembly of the K1 polysialic acid capsule. Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C, and activation requires protein synthesis (Whitfield et al., J. Bacteriol. 159:321-328, 1984). Using this temperature-induced defect, we determined the molecular weights and locations of membrane proteins correlated with the expression of K1 (polysialosyl) capsular antigen. Pulse-labeling experiments demonstrated the presence of 11 proteins whose synthesis was correlated with capsule appearance at the cell surface. Using the differential solubility of inner and outer membranes in the detergent Sarkosyl, we localized five of the proteins in the outer membrane and four in the inner membrane. The subcellular location of two of the proteins was not determined. Five proteins appeared in the membrane simultaneously with the initial expression of the K1 capsule at the cell surface. One of these proteins, a 40,000-dalton protein localized in the outer membrane, was identified as porin protein K, which previously has been shown to be present in the outer membrane of encapsulated E. coli. The possible role of these proteins in the synthesis of the polysialosyl capsule is discussed.  相似文献   

5.
We are studying an O4/K54/H5 Escherichia coli bacteremic isolate (CP9) as a model pathogen for extraintestinal infection. Its group 2, K54 capsular polysaccharide is an important virulence determinant and confers serum resistance. In this study the effect of the group 1 capsule regulators, RcsA, RcsB, and Lon protease, on the regulation of CP9's capsular polysaccharides was assessed. It was established that in the presence of multicopy rcsA or with disruption of lon, CP9 can be induced to produce a group 1 capsule. RcsA, RcsB, and Lon are present in this K54 background and regulate group 1 capsule expression in a fashion similar to that described for K-12 strains. Two independent group 2 capsule gene protein fusions (cl1.29::TnphoA and cl1.137::TnphoA) were used to evaluate the effects of these regulators on group 2 K54 capsule production. Disruption of lon resulted in 1.9-fold (TR293 [cl1.29::TnphoA lon-146]) and 3.4-fold (TR1373 [cl1.137::TnphoA lon-146]) decreases in fusion activity at 28 degrees C, relative to the baseline level. However, decreases in fusion activity at 42 degrees C were only 1.2- and 1.4-fold, respectively. Inactivation of both lon and rcsA or lon and rcsB restored fusion activity to baseline levels at 28 degrees C, but only a partial restoration of activity was seen at higher temperatures. To assess whether these differences in fusion activity reflected a functional change in capsule production, the effects of 80% normal human serum (NHS) were tested against CP9 and TR93 (lon-146). Since the group 2 K54 capsule protects against the bactericidal activity of 80% NHS, a decrease in its production results in an increase in serum sensitivity. Viable counts of CP9 increased 10-fold in 80% NHS over 3 h at 28 degrees C, as expected. In contrast to CP9, TR93 (lon-146) incurred a 10-fold loss in viability under the same conditions. The levels of RcsA are increased in TR93 (lon 146) as consequence of lon disruption; therefore, these results in conjunction with the cl1::TnphoA protein fusion data establish RcsA as a negative regulator of the group 2 K54 capsular polysaccharide. Furthermore, these results also suggest existence of another Lon-sensitive negative regulator of group 2 K54 capsule production, which is active higher temperatures.  相似文献   

6.
7.
Two genes, designated rcsA (regulation of capsule synthesis) and rcsB, that had been cloned from the chromosome of Klebsiella aerogenes (K. pneumoniae) capsular serotype K21 were capable of activating expression of colanic acid capsular polysaccharide in Escherichia coli K12. The Klebsiella rcsA gene encoded a polypeptide of 23 kDa that was required for the induction of a mucoid phenotype at less than or equal to 30 degrees C but not at greater than or equal to 37 C. The Klebsiella rcsB locus encoded no apparent polypeptides and was not capable by itself of causing the overproduction of colanic acid. However, when present in the same cell with rcsA, either in cis or in trans, rcsB caused expression of mucoidy in E. coli at all growth temperatures. These findings are best explained if the Klebsiella rcsA gene product acts as a positive regulator of colanic acid biosynthesis in E. coli and that activity of this protein is in turn subject to regulation by Lon protease. The Klebsiella rcsB locus may exert its effect by preferentially binding a negative regulator of capsular biosynthesis, possibly Lon itself. DNA sequences homologous to the Klebsiella K21b rcsA and rcsB genes were found in the genomes of all other capsular serotypes of klebsiellae examined, including K2, K12, K36 and K43. However, there was no homology between such genes and the chromosome of E. coli. The ability of these rcs genes to induce a mucoid phenotype explains the apparent conjugative transfer from klebsiellae to E. coli of the ability to produce K21 or other Klebsiella capsular polysaccharides that are structurally and antigenically related to colanic acid.  相似文献   

8.
Wzc proteins are tyrosine autokinases. They are found in some important bacterial pathogens of humans and livestock as well as plant-associated bacteria, and are often encoded within gene clusters determining synthesis and assembly of capsular and extracellular polysaccharides. Autophosphorylation of Wzc(cps) is essential for assembly of the serotype K30 group 1 capsule in Escherichia coli O9a:K30, although a genetically unlinked Wzc(cps)-homologue (Etk) can also participate with low efficiency. While autophosphorylation of Wzc(cps) is required for assembly of high molecular weight K30 capsular polysaccharide, it is not essential for either the synthesis of the K30 repeat units or for activity of the K30 polymerase enzyme. Paradoxically, the cognate phosphotyrosine protein phosphatase for Wzc(cps), Wzb(cps), is also required for capsule expression. The tyrosine-rich domain at the C terminus of Wzc(cps) was identified as the site of phosphorylation and autophosphorylation of Wzc requires a functional Walker A motif. Intermolecular transphosphorylation of Wzc(cps) was detected in strains expressing a combination of mutant Wzc(cps) derivatives. The N- and C-terminal domains of Wzc(cps) were expressed independently to mimic the situation found naturally in Gram-positive bacteria. In this format, both domains were required for phosphorylation of the Wzc(cps) C terminus, and for capsule assembly. Regulation by a post-translational phosphorylation event represents a new dimension in the assembly of bacterial cell-surface polysaccharides.  相似文献   

9.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

10.
This report describes the structure, size, and shape of the uncollapsed polysaccharide capsule of Escherichia coli strain Bi 161/42 [O9:K29(A):H-], its ultrastructural preservation as well as the filamentous components of the isolated capsular material. In a temperature-sensitive mutant, sites were localized at which capsular polysaccharide is "exported" to the cell surface. The highly hydrated capsule of the wild-type cells was visible in the uncollapsed state after freeze-etching, whereas dehydration in greater than or equal to 50% acetone or alcohol caused the capsule to collapse into thick bundles. This was prevented by pretreatment of the cell with capsule-specific immunoglobulin G; the capsule appeared as a homogeneous layer of 250- to 300-nm thickness. The structural preservation depended on the concentration of the anti-capsular immunoglobulin G. Temperature-sensitive mutants, unable to produce capsular antigen at elevated temperatures, showed, 10 to 15 min after shift down to permissive temperature, polysaccharide strands with K29 specificity appearing at the cell surface at roughly 20 sites per cell; concomitantly, capsule-directed antibody started to agglutinate the bacteria. The sites at which the new antigen emerged were found in random distribution over the entire surface of the organism. Spreading of purified polysaccharide was achieved on air-water interfaces; after subsequent shadow casting with heavy metal, filamentous elements were observed with a smallest class of filaments measuring 250 nm in length and 3 to 6 nm in width. At one end these fibers revealed a knoblike structure of about 10-nm diameter. The slimelike polysaccharides from mutants produced filamentous bundles of greater than 100-microns length, with antigenic and phage-receptor properties indistinguishable from those of the wild-type K29 capsule antigen.  相似文献   

11.
Methods were developed for the polyacrylamide gel electrophoretic analysis of capsular polysaccharides of bacteria with Escherichia coli K1 as a model. Conditions were determined for the rapid and gentle extraction of the K1 polysaccharide by incubation of the bacteria in a volatile buffer and for the subsequent removal of the putative phospholipid moiety attached to the reducing end of the polysaccharide. Detection of the polysaccharides after gel electrophoresis was carried out by fluorography of samples labeled by sodium borotritiide reduction or by combined alcian blue and silver staining. The smallest components could be detected only by fluorography, owing to diffusion during staining. Components of the E. coli K1 polysialic acid capsule ranging from monomers to 80 sialic-acid-unit-containing polymers could be separated as distinct bands in a ladderlike pattern. A maximum chain length of 160 to 230 sialyl residues was estimated for the bulk of the K1 polysaccharide from the nearly linear reciprocal relationship between the logarithm of the molecular size and the distance of migration. Gel electrophoresis of capsular polysaccharides of other bacterial species revealed different electrophoretic mobilities for each polysaccharide, with a ladderlike pattern displayed by the fastest-moving components. There are many potential applications of this facile method for the determination of the sizes of molecules present in a polydisperse polysaccharide sample. When combined with the simple method for the isolation of the capsule, as in the case of the K1 capsule, it provides an efficient tool for the characterization and comparison of the capsular polysaccharides of bacteria.  相似文献   

12.
13.
Staphylococcus aureus strain M produces large amounts of capsular polysaccharide. It produces a non-encapsulated variant at a frequency of 0.01% at 37 degrees C. At high temperature (43 degrees C), the frequency of capsule loss was shown to be 1-38%. A 19 kb plasmid and a prophage were found to be carried by the M strain, but curing of these elements did not affect capsular production. To clone the capsular (cap) genes, a plasmid library of S. aureus M was constructed directly in S. aureus RN4200. The library was then infected with phage 80 alpha. After transduction of the phage lysates to a Cap- mutant derived from M strain, a recombinant plasmid was obtained which complemented the mutant to a Cap+ phenotype. Chromosomal walking experiments were used to clone additional nearby cap genes. Complementation tests using a collection of Cap- mutants showed that most of the mutants were complemented by a 19.4 kb DNA fragment, suggesting that the majority of the cap genes affecting capsule production are clustered together.  相似文献   

14.
Escherichia coli serotype O9:K(A)30 and Klebsiella O1:K20 produce thermostable capsular polysaccharides or K antigens, which are chemically and serologically indistinguishable. Plasmid pULB113 (RP4::mini-Mu) has been used to mediate chromosomal transfer from E. coli O9:K30 and Klebsiella O1:K20 to a multiply marked, unencapsulated, E. coli K12 recipient. Analysis of the cell surface antigens of the transconjugants confirmed previous reports that the genetic determinants for the E. coli K(A) antigens are located near the his and rfb (O antigen) loci on the E. coli linkage map. The Klebsiella K20 capsule genes were also found to be in close proximity to the his and rfb loci. Electron microscopy revealed significant differences in the structural organization of capsular polysaccharides in these two microorganisms and the morphological differences were also readily apparent in transconjugants expressing the respective K antigens. These results are consistent with the interpretation that at least some of the organizational properties of capsular polysaccharides may be genetically determined, rather than being a function of the outer membrane to which the capsular polysaccharides are ultimately attached.  相似文献   

15.
The capsular K5 polysaccharide, a representative of group II capsular antigens of Escherichia coli, has been cloned previously, and three gene regions responsible for polymerization and surface expression have been defined (I. S. Roberts, R. Mountford, R. Hodge, K. B. Jann, and G. J. Boulnois, J. Bacteriol. 170:1305-1310, 1988). In this report, we describe the immunoelectron microscopic analysis of recombinant bacteria expressing the K5 antigen and of mutants defective in either region 1 or region 3 gene functions, as well as the biochemical analysis of the K5 capsular polysaccharide. Whereas the K5 clone expressed the K5 polysaccharide as a well-developed capsule in about 25% of its population, no capsule was observed in whole mount preparations and ultrathin sections of the expression mutants. Immunogold labeling of sections from the region 3 mutant revealed the capsular K5 polysaccharide in the cytoplasm. With the region 1 mutant, the capsular polysaccharide appeared associated with the cell membrane, and, unlike the region 3 mutant polysaccharide, the capsular polysaccharide could be detected in the periplasm after plasmolysis of the bacteria. Polysaccharides were isolated from the homogenized mutants with cetyltrimethylammonium bromide. The polysaccharide from the region 1 mutant had the same size as that isolated from the capsule of the original K5 clone, and both polysaccharides were substituted with phosphatidic acid. The polysaccharide from the region 3 mutant was smaller and was not substituted with phosphatidic acid. These results prompt us to postulate that gene region 3 products are involved in the translocation of the capsular polysaccharide across the cytoplasmic membrane and that region 1 directs the transport of the lipid-substituted capsular polysaccharide through the periplasm and across the outer membrane.  相似文献   

16.
The established seventy-one Escherichia coli polysaccharide capsular K antigenic test strains were examined for the development of the K antigen after growth at 37 degrees C and 18 degrees C. Twenty-eight K antigens were not detectable after growth of bacteria at 18 degrees C, while the remaining 43 antigens were developed at both temperatures. Most of the temperature-dependent antigens belonged to electrophoretically fast-moving K polysaccharides of rather low molecular weight, characteristically found among the common K antigens from extraintestinal disease isolates. Lipopolysaccharide O antigens were developed at both growth temperatures.  相似文献   

17.
Escherichia coli Capsule Bacteriophages II. Morphology   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli capsule bacteriophages (K phages) described herein are specific for certain capsular strains of E. coli, all of them test strains for different E. coli K antigens. The phages are not adsorbed to the acapsular mutants of their host organisms nor to similar strains with serologically and chemically different capsular polysaccharides. Thirteen E. coli (and one Klebsiella) K phages were visualized in the electron microscope. Most viruses are similar to P22 and thus belong to Bradley group C; however, one each of group A (long, contractile tail) and group B (long, noncontractile tail) was also found. All K phages were seen to carry spikes but no tail fibers were detected. These results suggest that the structures responsible for the recognition of the thick (about 400 nm or more) capsular polysaccharide gels are located in these spikes.  相似文献   

18.
E R Vimr 《Journal of bacteriology》1992,174(19):6191-6197
The enzymes required for polysialic acid capsule synthesis in Escherichia coli K1 are encoded by region 2 neu genes of the multigenic kps cluster. To facilitate analysis of capsule synthesis and translocation, an E. coli K1 strain with mutations in nanA and neuB, affecting sialic acid degradation and synthesis, respectively, was constructed by transduction. The acapsular phenotype of the mutant was corrected in vivo by exogenous addition of sialic acid. By blocking sialic acid degradation, the nanA mutation allows intracellular metabolite accumulation, while the neuB mutation prevents dilution by the endogenous sialic acid pool and allows capsule synthesis to be controlled experimentally by the exogenous addition of sialic acid to the growth medium. Complementation was detected by bacteriophage K1F adsorption or infectivity assays. Polysialic acid translocation was observed within 2 min after addition of sialic acid to the growth medium, demonstrating the rapidity in vivo of sialic acid transport, activation, and polymerization and translocation of polysaccharide to the cell surface. Phage adsorption was not inhibited by chloramphenicol, demonstrating that de novo protein synthesis was not required for polysialic acid synthesis or translocation at 37 degrees C. Exogenous radiolabeled sialic acid was incorporated exclusively into capsular polysaccharide. The polymeric nature of the labeled capsular material was confirmed by gel permeation chromatography and susceptibility of sialyl polymers to K1F endo-N-acylneuraminidase. The ability to experimentally manipulate capsule expression provides new approaches for investigating polysialic acid synthesis and membrane translocation mechanisms.  相似文献   

19.
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号