首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of selective addition or deletion of polar amino acids in a 13-residue antibacterial peptide PKLLKTFLSKWIG on structure, membrane binding and biological activities have been investigated. The variants generated are (a) S and T residues replaced by K, (b) S and T residues deleted individually and together, (c) introduction of two additional K and (d) deletion of L and L with T. In the aqueous environment all the peptides were unordered. In trifluoroethanol, the spectra of peptides belonging to groups (a-c) suggest distorted helical conformation. Peptides in group (d) appear to adopt beta-sheet conformation. The peptides bind to zwitterionic and negatively charged lipid vesicles, although to different extents. With the exception of peptides in group (d), all the other peptides exhibited comparable antibacterial activity against Escherichia coli and Staphylococcus aureus. However, the changes made in the peptides in groups (a-c) resulted in reduction of hemolytic activity compared to the parent peptide. Extent of binding to lipid vesicles composed of phosphatidylcholine and cholesterol appears to correlate with hemolytic activity. It appears that polar and charged residues play a major role in modulating the biological activities of the 13-residue peptide PKLLKTFLSKWIG. The 11-residue peptide-like PKLLKFLKWIG has selective antibacterial activity. Thus, by judicious engineering it should be possible to generate short peptides with selective antibacterial activity.  相似文献   

2.
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.  相似文献   

3.
One of the major obstacles in the development of new antimicrobial peptides as novel antibiotics is salt sensitivity. Hal18, an α-helical subunit of Halocidin isolated from Halocynthia aurantium, has been previously shown to maintain its antimicrobial activity in high salt conditions. The α-helicity of Hal18 in the presence and absence of salt was demonstrated by circular dichroism spectroscopy, which showed that the peptide was mainly unordered containing β-strands and β-turns. However, in the presence of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS) vesicles, Hal18 folded to form α-helices (circa 42?%). Furthermore, the structure was not significantly affected by pH or the presence of metal ions. These data were supported by monolayer results showing Hal18 induced stable surface pressure changes in monolayers composed of DMPC (5?mN?m(-1)) and DMPS (8.5?mN?m(-1)), which again were not effected by the presence of metal ions or pH. It is proposed that the hydrophobic groove within its molecular architecture enables the peptide to form stable associations with lipid membranes. The balance of hydrophobicity along the Hal18 long axis would also support oblique orientation of the peptide at the membrane interface. Hence, this model of membrane interaction would enable the peptide to penetrate deep into the membrane. This concept is supported by lysis data. Overall, it would appear that this peptide is a potential candidate for future AMP design for use in high salt environments.  相似文献   

4.
Peptides that induce apoptosis have potential as anticancer therapeutics. The design of safe, effective cancer therapeutic peptides requires characterization of the physical and chemical properties that influence activation of cell death in neoplastic cells. NTR365 is a synthetic pro-apoptotic peptide with an amino acid sequence derived from the death domain of p75(NTR). These studies were initiated to identify a potential mechanism for the apoptotic activity of NTR365 identified by Rabizadeh et al. We examined the interactions of this synthetic pro-apoptotic peptide with phospholipid vesicles. Fluorescence experiments demonstrate that the peptide induces leakage from large unilamellar vesicles. Leakage activity is transient and dependent on the presence of anionic lipid in the vesicles. Circular dichroism studies show that the NTR365 adopts a different conformation and may have altered vesicle affinity under conditions conducive to leakage. The active conformation of NTR365 differs from that of the NMR derived conformation. A related peptide with a single substitution is not apoptotically active, does not form a helical structure in the presence of vesicles and does not induce appreciable vesicle leakage under the same conditions as NTR365. These studies suggest that the demonstrated apoptotic activity of a closely related NTR364 peptide is linked to disruption of a membrane barrier and to the ability of the peptide to form a helical structure.  相似文献   

5.
Interactions of hypelcin A, an alpha-aminoisobutyric acid containing antibiotic peptide, with phosphatidylcholine vesicles were investigated to obtain information on its bioactive mechanism. The peptide induced the leakage of a fluorescent dye, calcein, entrapped in sonicated vesicles. The leakage rate depended on both the peptide and the lipid concentrations. Analysis of this dependency indicated that the leakage was due to the monomeric peptide and that the membrane-perturbing activity of the monomer was higher for solid distearoylphosphatidylcholine vesicles than for fluid egg yolk phosphatidylcholine vesicles. Hypelcin A also affected the gel to liquid-crystalline phase transition of dipalmitoylphosphatidylcholine multilamellar vesicles. The transition was broadened with a reduced transition enthalpy, suggesting the peptide strongly binds the surrounding lipids to perturb the bilayer lipid packing. A circular dichroism study revealed that the helical content of hypelcin A increases upon membrane binding. We concluded that the monomeric peptide with an increased helical content, complexed with the lipids, perturbs the lipid organization and induces the increased permeability.  相似文献   

6.
Buforin II is a 21-amino acid polycationic antimicrobial peptide derived from a peptide originally isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. It is hypothesized to target a wide range of bacteria by translocating into cells without membrane permeabilization and binding to nucleic acids. Previous research found that the structure and membrane interactions of buforin II are related to lipid composition. In this study, we used molecular dynamics (MD) simulations along with lipid vesicle experiments to gain insight into how buforin II interacts differently with phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) lipids. Fluorescent spectroscopic measurements agreed with the previous assertion that buforin II does not interact with pure PC vesicles. Nonetheless, the reduced entry of the peptide into anionic PG membranes versus neutral PC membranes during simulations correlates with the experimentally observed reduction in BF2 translocation through pure PG membranes. Simulations showing membrane entry into PC also provide insight into how buforin II may initially penetrate cell membranes. Our MD simulations also allowed us to consider how neutral PE lipids affect the peptide differently than PC. In particular, the peptide had a more helical secondary structure in simulations with PE lipids. A change in structure was also apparent in circular dichroism measurements. PE also reduced membrane entry in simulations, which correlates with decreased translocation in the presence of PE observed in previous studies. Together, these results provide molecular-level insight into how lipid composition can affect buforin II structure and function and will be useful in efforts to design peptides with desired antimicrobial and cell-penetrating properties.  相似文献   

7.
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes.  相似文献   

8.
Buzón V  Padrós E  Cladera J 《Biochemistry》2005,44(40):13354-13364
The interaction of the so-called fusion peptide of the human immunodeficiency virus gp41 envelope glycoprotein with the target cell membrane is believed to trigger the fusion process which allows the entry of the virus into the cell. Many studies on the interaction of the fusion peptide with biological membranes have been carried out using synthetic peptides and model membranes. Due to the variety of experimental systems and sequences used, some controversy exists, concerning mainly the type of structure which triggers membrane destabilization and fusion (alpha helix or beta structure). With the aim of contributing to shed some light on the subject we have undertaken a series of experiments on the interaction of the three most representative fusion sequences with model membranes under the same experimental conditions. The results show that the fusion peptides, which adopt an unordered structure when dissolved in DMSO, form a mixture of aggregated beta and helical + unordered structures in aqueous buffer. Model membranes are shown to enhance the formation of aggregated beta structures. The nature of the membrane binding event, the kinetics of the binding and lipid mixing processes, and the kinetics of the structural changes depend on whether both ends of the fusion sequence or just one bears a positive charge. Analysis of the kinetic data shows that lipid mixing depends on the transformation of unordered + helical structures into aggregated beta structures upon binding to the membrane.  相似文献   

9.
Nagy JK  Lonzer WL  Sanders CR 《Biochemistry》2001,40(30):8971-8980
Despite the relevance of membrane protein misfolding to a number of common diseases, our understanding of the folding and misfolding of membrane proteins lags well behind soluble proteins. Here, the overall kinetics of membrane insertion and folding of the homotrimeric integral membrane protein diacylglycerol kinase (DAGK) is addressed. DAGK was purified into lipid/detergent-free urea and guanidinium solutions and subjected to general structural characterization. In urea, the enzyme was observed to be monomeric but maintained considerable tertiary structure. In guanidinium, it was also monomeric but exhibited much less tertiary structure. Aliquots of these DAGK stock solutions were diluted 200-fold into lipid vesicles or into detergent/lipid mixed micelles, and the rates and efficiencies of folding/insertion were monitored. Reactions were also carried out in which micellar DAGK solutions were diluted into vesicular solutions. Productive insertion of DAGK from denaturant solutions into mixed micelles occurred much more rapidly than into lipid vesicles, suggesting that bilayer transversal represents the rate-limiting step for DAGK assembly in vesicles. The efficiency of productive folding/insertion into vesicles was highest in reactions initiated with micellar DAGK stock solutions (where DAGK maintains a nativelike fold and oligomeric state) and lowest in reactions starting with guanidinium stocks (where DAGK is an unfolded monomer). Moreover, the final ratio of irreversibly misfolded DAGK to reversibly misfolded enzyme was highest following reactions initiated with guanidinium stock solutions and lowest when micellar stocks were used. Finally, it was also observed that very low concentrations of detergents were able to both enhance the bilayer insertion rate and suppress misfolding.  相似文献   

10.
Interhelical salt bridges are common in leucine zippers and are thought to stabilize the coiled coil conformation. Here we present a detailed thermodynamic investigation of the designed, disulfide-linked leucine zipper AB(SS) whose high-resolution NMR structure shows six interhelical ion pairs between heptad positions g of one helix and e' of the other helix but no ion pairing within single helices. The average pK(a) value of the Glu side chain carboxyl groups of AB(SS) is slightly higher than the pK(a) of a freely accessible Glu in an unfolded peptide [Marti, D. N., Jelesarov, I., and Bosshard, H. R. (2000) Biochemistry 39, 12804-12818]. This indicates that the salt bridges are destabilizing, a prediction we now have confirmed by determining the pH +/- stability profile of AB(SS). Circular dichroism-monitored unfolding by urea and by heating and differential scanning calorimetry show that the coiled coil conformation is approximately 5 kJ/mol more stable when salt bridges are broken by protonation of the carboxyl side chains. Using guanidinium chloride as the denaturant, the increase in the free energy of unfolding on protonation of the carboxyl side chains is larger, approximately 17 kJ/mol. The discrepancy between urea and guanidinium chloride unfolding can be ascribed to the ionic nature of guanidinium chloride, which screens charge-charge interactions. This work demonstrates the difficulty of predicting the energetic contribution of salt bridges from structural data alone even in a case where the ion pairs are seen in high-resolution NMR structures. The reason is that the contribution to stability results from a fine balance between energetically favorable Coulombic attractions and unfavorable desolvation of charges and conformational constraints of the residues involved in ion pairing. The apparent discrepancy between the results presented here and mutational studies indicating stabilization by salt bridges is discussed and resolved. An explanation is proposed for why interhelical salt bridges are frequently found in natural coiled coils despite evidence that they do not directly contribute to stability.  相似文献   

11.
Lipopeptide MSI-843 consisting of the nonstandard amino acid ornithine (Oct-OOLLOOLOOL-NH2) was designed with an objective towards generating non-lytic short antimicrobial peptides, which can have significant pharmaceutical applications. Octanoic acid was coupled to the N-terminus of the peptide to increase the overall hydrophobicity of the peptide. MSI-843 shows activity against bacteria and fungi at micromolar concentrations. It permeabilizes the outer membrane of Gram-negative bacterium and a model membrane mimicking bacterial inner membrane. Circular dichroism investigations demonstrate that the peptide adopts α-helical conformation upon binding to lipid membranes. Isothermal titration calorimetry studies suggest that the peptide binding to membranes results in exothermic heat of reaction, which arises from helix formation and membrane insertion of the peptide. 2H NMR of deuterated-POPC multilamellar vesicles shows the peptide-induced disorder in the hydrophobic core of bilayers. 31P NMR data indicate changes in the lipid head group orientation of POPC, POPG and Escherichia colitotal lipid bilayers upon peptide binding. Results from 31P NMR and dye leakage experiments suggest that the peptide selectively interacts with anionic bilayers at low concentrations (up to 5 mol%). Differential scanning calorimetry experiments on DiPOPE bilayers and 31P NMR data from E.coli total lipid multilamellar vesicles indicate that MSI-843 increases the fluid lamellar to inverted hexagonal phase transition temperature of bilayers by inducing positive curvature strain. Combination of all these data suggests the formation of a lipid-peptide complex resulting in a transient pore as a plausible mechanism for the membrane permeabilization and antimicrobial activity of the lipopeptide MSI-843.  相似文献   

12.
The structure of "B18", an 18-residue fusogenic peptide from the sea urchin fertilization protein bindin, was investigated in several membrane-mimicking environments with circular dichroism and nuclear magnetic resonance spectroscopy. The fully conserved peptide sequence represents the minimal functional part of the 24 kDa protein, which can bind to membranes and induce fusion of lipid vesicles. The B18 peptide undergoes a coil-helix transition in the presence of TFE, showing a transient tendency to self-associate. Its NMR structure in 30% TFE exhibits two helical regions at either side, connected by a flexible loop. In DPC and SDS detergent micelles, this loop becomes distinctly bent, presumably due to the high degree of curvature of the micelles. The loop contains a histidine-rich motif for binding zinc, which is required for the fusogenic function of the peptide. Therefore, we monitored the structural response of B18 and of recombinant bindin toward this ion. Like TFE, and in a mutually cooperative manner, zinc induces a partially helical structure in both the peptide and the protein. Complex formation via the histidine residues rigidifies the flexible loop and is accompanied by self-association of the molecules. The data suggest that the zinc-bound functional state is a continuous amphipathic alpha-helix, bearing some resemblance to a leucine zipper. Two hydrophobic patches on one face could favorably penetrate into a membrane, while two arginines on the other face could interact with lipid phosphate groups. The three-dimensional model of the B18 sequence thus contributes to a better understanding of peptide-induced vesicle fusion in general, and of the lipid-protein interactions of sperm bindin in particular.  相似文献   

13.
Membrane fusion between uncharged lipid vesicles can be triggered by the peptide sequence 'B18' from the fertilization protein 'bindin', but it only proceeds efficiently in the presence of Zn(2+) ions. We studied (i) the interaction of Zn(2+) with the fusogenic peptide B18, (ii) the binding of B18 to 1-palmitoyl-2-oleoylglycero-3-phosphocholine (POPC), and (iii) the ternary system POPC/B18/Zn(2+). The complex formation of Zn(2+) with the central histidine-rich motif of B18 appears to shift the secondary structure away from a beta-sheet towards an alpha-helical conformation. Here we observe for the first time an essentially alpha-helical structure of the peptide when immersed in POPC bilayers which appears to represent its functional fusogenic state. Infrared linear dichroism suggests a peripheral, oblique insertion mode of B18, mediated by the hydrophobic patches along one side of the amphipathic peptide. Furthermore, the hydration level of the peptide is reduced, suggesting that the hydrophobic region of the bilayer is involved in the lipid/peptide interactions. The hydration capacity of the POPC/B18/Zn(2+) system is distinctly smaller than that of POPC/Zn(2+) without peptide. The accompanying decrease in the number of tightly bound water molecules per lipid can be interpreted as a reduction in the repulsive 'hydration' forces, which usually prevent the spontaneous fusion of lipid vesicles. Binding of the B18 peptide in the presence of Zn(2+) effectively renders the membrane surface more hydrophobic, thus allowing fusion to proceed.  相似文献   

14.
The antibacterial peptide PGLa exerts its activity by permeabilizing bacterial membranes whereas eukaryotic membranes are not affected. To provide insight into the selectivity and the permeabilization mechanism, the binding of PGLa to neutral and negatively charged model membranes was studied with high-sensitivity isothermal titration calorimetry (ITC), circular dichroism (CD), and solid-state deuterium nuclear magnetic resonance ((2)H NMR). The binding of PGLa to negatively charged phosphatidylcholine (PC)/phosphatidylglycerol (PG) (3:1) vesicles was by a factor of approximately 50 larger than that to neutral PC vesicles. The negatively charged membrane accumulates the cationic peptide at the lipid-water interface, thus facilitating the binding to the membrane. However, if bulk concentrations are replaced by surface concentrations, very similar binding constants are obtained for neutral and charged membranes (K approximately 800-1500 M(-)(1)). Membrane selectivity is thus caused almost exclusively by electrostatic attraction to the membrane surface and not by hydrophobic insertion. Membrane insertion is driven by an exothermic enthalpy (DeltaH approximately -11 to -15 kcal/mol) but opposed by entropy. An important contribution to the binding process is the membrane-induced random coil --> alpha-helix transition of PGLa. The peptide is random coil in solution but adopts an approximately 80% alpha-helical conformation when bound to the membrane. Helix formation is an exothermic process, contributing approximately 70% to the binding enthalpy and approximately 30% to the free energy of binding. The (2)H NMR measurements with selectively deuterated lipids revealed small structural changes in the lipid headgroups and in the hydrocarbon interior upon peptide binding which were continuous over the whole concentration range. In contrast, isothermal titration calorimetry of PGLa solutions with PC/PG(3:1) vesicles gave rise to two processes: (i) an exothermic binding of PGLa to the membrane followed by (ii) a slower endothermic process. The latter is only detected at peptide-to-lipid ratios >17 mmol/mol and is paralleled by the induction of membrane leakiness. Dye efflux measurements are consistent with the critical limit derived from ITC measurements. The endothermic process is assigned to peptide pore formation and/or lipid perturbation. The enthalpy of pore formation is 9.7 kcal/mol of peptide. If the same excess enthalpy is assigned to the lipid phase, the lipid perturbation enthalpy is 180 cal/mol of lipid. The functional synergism between PGLa and magainin 2 amide could also be followed by ITC and dye release experiments and is traced back to an enhanced pore formation activity of a peptide mixture.  相似文献   

15.
Equinatoxin II (EqtII) is a protein toxin that lyses both red blood cells and artificial membranes. Lysis is dependent on the lipid composition, with small unilamellar vesicles (SUVs) of dimyristoylphosphatidylcholine (DMPC) and sphingomyelin (SM) (1:1 molar) being lysed more readily than those of phosphatidylcholine alone. Removing the N-terminus of EqtII prevents pore formation, but does not prevent membrane binding. A peptide corresponding to residues 1–32 of EqtII was found using NMR to adopt a helical structure in micelles. To further understand the structural changes that accompany membrane insertion, synchrotron radiation circular dichroism spectra of the N-terminal peptide in a range of model membranes have been analysed. The peptide structure was examined in water, dodecylphosphocholine (DPC) and DPC:SM (5:1) micelles, and SUVs composed of dioleoylphosphatidylcholine (DOPC) or DMPC, together with SM and cholesterol (Chol). The peptide adopted different conformations in different lipids. Although the presence of SM did not affect the conformation in micelles, inclusion of SM in the bilayer-forming lipid increased the helicity of the peptide. This effect was abolished when Chol was added in DOPC but not in DMPC, which may relate to liquid ordered versus disordered phase properties of the lipid. SM may act as a promoter of membrane organisation necessary for membrane lysis by EqtII.  相似文献   

16.
The binding, conformation and orientation of a hydrophilic vector peptide penetratin in lipid membranes and its state of self-association in solution were examined using circular dichroism (CD), analytical ultracentrifugation and fluorescence spectroscopy. In aqueous solution, penetratin exhibited a low helicity and sedimented as a monomer in the concentration range approximately 50-500 microM. The partitioning of penetratin into phospholipid vesicles was determined using tryptophan fluorescence anisotropy titrations. The apparent penetratin affinity for 20% phosphatidylserine/80% egg phosphatidylcholine vesicles was inversely related to the total peptide concentration implying repulsive peptide-peptide interactions on the lipid surface. The circular dichroism spectra of the peptide when bound to unaligned 20% phosphatidylserine/80% egg phosphatidylcholine vesicles and aligned hydrated phospholipid multilayers were attributed to the presence of both alpha-helical and beta-turn structures. The orientation of the secondary structural elements was determined using oriented circular dichroism spectroscopy. From the known circular dichroism tensor components of the alpha-helix, it can be concluded that the orientation of the helical structures is predominantly perpendicular to the membrane surface, while that of the beta-type carbonyls is parallel to the membrane surface. On the basis of our observations, we propose a novel model for penetratin translocation.  相似文献   

17.
High-risk papillomaviruses are known to exert their transforming activity mainly through E7, one of their two oncoproteins. Despite its relevance, no structural information has been obtained that could explain the apparent broad binding specificity of E7. Recombinant E7 from HPV-16 purified to near homogeneity showed two species in gel filtration chromatography, one of these corresponding to a dimer with a molecular weight of 22 kDa, determined by multiangle light scattering. The E7 dimer was isolated for characterization and was shown to undergo a substantial conformational transition when changing from pH 7.0 to 5.0, with an increase in helical structure and increased solvent accessibility to hydrophobic surfaces. The protein was resistant to thermal denaturation even in the presence of SDS, and we show that persistent residual structure in the monomer is responsible for its reported anomalous electrophoretic behavior. The dimer also displays a nonglobular hydrodynamic volume based on gel filtration experiments and becomes more globular in the presence of 0.3 M guanidinium chloride, with hydrophobic surfaces becoming accessible to the solvent, as indicated by the large increase in ANS binding. At low protein concentration, dissociation of the globular E7 dimer was observed, preceding the cooperative unfolding of the structured and extended monomer. Although E7 bears properties that resemble natively unfolded polypeptides, its far-UV circular dichroism spectrum, cooperative unfolding, and exposure of ANS binding sites support a folded and extended, as opposed to disordered and fluctuating, conformation. The large increase in solvent accessibility to hydrophobic surfaces upon small pH decrease within physiological range and in mild denaturant concentrations suggests conformational properties that could have evolved to enable protein-protein recognition of the large number of cellular binding partners reported.  相似文献   

18.
The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane.  相似文献   

19.
Cell-penetrating peptides (CPPs) are able to translocate and carry cargo molecules across cell membranes. Using fluorescence techniques (polarization and quenching) and CD spectroscopy we studied the interaction, conformation and topology of two such peptides, transportan and 'penetratin' (pAntp), and two variants of differing translocating abilities, with small phospholipid vesicles of varying charge density. The induced structure of transportan is always helical independent of vesicle surface charge. pAntp and its two variants interact significantly only with negatively charged vesicles. The induced secondary structure depends on membrane charge and lipid/peptide ratio. The degree of membrane perturbation, evidenced by fluorescence polarization, of pAntp and its variants is related to their secondary structure. In the helical state, the peptides have little effect on the membrane. Under conditions where pAntp and its variants are converted into beta-structures, they cause membrane perturbation. Oriented CD suggests that the two CPPs (pAntp and transportan) in their helical state lie along the vesicle surface, while the two pAntp variants appear to penetrate deeper into the membrane.  相似文献   

20.
A Percot  X X Zhu  M Lafleur 《Biopolymers》1999,50(6):647-655
In an effort to develop a polymer/peptide assembly for the immobilization of lipid vesicles, we have made and characterized four water-soluble amphiphilic peptides designed to associate spontaneously and strongly with lipid vesicles without causing significant leakage from anchored vesicles. These peptides have a primary amphiphilic structure with the following sequences: AAAAAAAAAAAAWKKKKKK, AALLLAAAAAAAAAAAAAAAAAAAWKKKKKK, and KKAALLLAAAAAAAAAAAAAAAAAAAWKKKKKK and its reversed homologue KKKKKKWAAAAA AAAAAAAAAAAAAALLLAAKK. Two of the four peptides have their hydrophobic segments capped at both termini with basic residues to stabilize the transmembrane orientation and to increase the affinity for negatively charged vesicles. We have studied the secondary structure and the membrane affinity of the peptides as well as the effect of the different peptides on the membrane permeability. The influence of the hydrophobic length and the role of lysine residues were clearly established. First, a hydrophobic segment of 24 amino acids, corresponding approximately to the thickness of a lipid bilayer, improves considerably the affinity to zwitterionic lipids compared to the shorter one of 12 amino acids. The shorter peptide has a low membrane affinity since it may not be long enough to adopt a stable conformation. Second, the presence of lysine residues is essential since the binding is dominated by electrostatic interactions, as illustrated by the enhanced binding with anionic lipids. The charges at both ends, however, prevent the peptide from inserting spontaneously in the bilayer since it would involve the translocation of a charged end through the apolar core of the bilayer. The direction of the amino acid sequence of the peptide has no significant influence on its behavior. None of these peptides perturbs membrane permeability even at an incubation lipid to peptide molar ratio of 0.5. Among the four peptides, AALLLAAAAAAAAAAAAAAAAAAAWKKKKKK is identified as the most suitable anchor for the immobilization of lipid vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号