首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthan is an heteropolysaccharide produced by Xanthomonascampestris. Xanthan gum fermentation by a local isolate of X. campestris using different carbon sources was studied. The production of polysaccharide was influenced by the carbon source used. The production of the xanthan was 15.654 g/l with synthetic medium. Production of xanthan at various temperatures ranging between 25v°C and 40v°C was studied. The growth and production was maximum between 25-30v°C. Xanthan production was maximum at pH 7.0-7.5.  相似文献   

2.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

3.
C4 plants are uncommon in cold environments and do not generally occur in the alpine tundra. In the White Mountains of California, however, the C4 grass Muhlenbergia richardsonis is common in the alpine zone at 3,300-3,800 m, with the highest population observed at 3,960 m (13,000 feet) above sea level. This is the highest reported C4 species in North America and is near the world altitude limit for C4 plants (4,000-4,500 m). Above 3,800 m, M. richardsonis is largely restricted to southern slope aspects, with greatest frequency on southeast-facing slopes. In open tundra, M. richardsonis formed prostrate mats with a mean height of 2.5 cm. Neighboring C3 grasses were two to three times taller. Because of its short stature, leaf temperature of M. richardsonis was greatly influenced by the boundary layer of the ground, rising over 20°C above air temperature in full sun and still air and over 10°C above air temperature in full sun and wind velocity of 1-4 m s-1. Thus, although air temperatures did not exceed 15°C, midday leaf temperatures of M. richardsonis were routinely between 25°C and 35°C, a range favorable to C4 photosynthesis. At night, leaf temperature of M. richardsonis was often 5-12°C below air temperature, resulting in regular exposure to subzero temperatures and frosting of the leaves. No visible injury was associated with exposure to freezing night temperatures. The presence of M. richardsonis in the alpine zone demonstrates that C4 plants can tolerate extreme cold during the growing season. The localization to microsites where leaf temperatures can exceed 25°C during the day, however, indicates that even when cold tolerant, C4 plants still require periods of high leaf temperature to remain competitive with C3 species. In this regard, the prostrate growth form of M. richardsonis compensates for the alpine climate by allowing sufficient heating of the leaf canopy during the day.  相似文献   

4.
Enterobacter cloacae IIT-BT08 was found to produce both !-amylase and hydrogen in a batch system using soluble starch as substrate. Incubation time, temperature, pH and substrate concentration for the maximum !-amylase activity (130 U/ml) were 8 h, 37 °C, 6.00 and 10 g/l of soluble potato starch respectively. However, the optimum temperature and pH for the crude !-amylase activity were 60 °C and 4 respectively. The maximum rate of hydrogen production was observed at 10th h of fermentation and corresponding hydrogen yield was 7.6 mmol H2/g soluble potato starch.  相似文献   

5.
Bacterial biomass and functional diversity in four marine and four freshwater samples, collected from Resolute Bay, Nunavut, Canada, were studied using fluorescent nucleic-acid staining and sole-carbon-source utilization. Viable microbial counts using the LIVE/DEAD BacLight Viability Kit estimated viable marine bacterial numbers from 0.7 to 1.8᎒6 cells/l, which were lower than viable bacterial numbers in freshwater samples (2.1-9.9᎒6 cells/l) (RCBD-ANOVA). Calculations of the Shannon-Wiener diversity index and average well colour development were based on substrate utilization in ECO-Biolog plates incubated at 4°C and 20°C for 38 and 24 days, respectively. The Shannon-Wiener diversity of the marine water samples was significantly greater ( x H'=2.40ǂ.08, P <0.005; RCBD-ANOVA) than that of freshwater samples ( x H'=1.20ǂ.00, P <0.005; RCBD-ANOVA). Differences in microbial diversity between fresh and marine water samples at 4°C ( x 4°C =2.01) and 20°C (x20°C =2.31) were also detected by RCBD-ANOVA analysis. Interactions between water type and incubation temperature were not significant ( F =1.926, F c=5.12). Principal component analysis revealed differences in metabolic substrate utilization patterns and, consequently, the microbial diversity between water types and samples.  相似文献   

6.
The maximal enzymatic activity of crude amylase produced in the batch culture of Clostridium beijerinckii strain AM21B grown in PY medium with starch was obtained at 55°C and in an acidic pH range of 4.6 to 5.4. Amylase was produced in the culture medium after 4 h (46.6 units) and reached a peak (405.5 units) after 12 h cultivation at 36°C, pH 6.0. Although the most efficient production of amylase, hydrogen and cells was achieved at 36°C and pH 6.0, the maximal hydrogen evolution rate was found at 41°C and pH 7.0.  相似文献   

7.
We have performed a comparative analysis of the fermentation of the solutions of the mixtures of D-glucose and D-xylose with the yeasts Pachysolen tannophilus (ATCC 32691) and Candida shehatae (ATCC 34887), with the aim of producing bioethanol. All the experiments were performed in a batch bioreactor, with a constant aeration level, temperature of 30v°C, and a culture medium with an initial pH of 4.5. For both yeasts, the comparison was established on the basis of the following parameters: maximum specific growth rate, biomass productivity, specific rate of substrate consumption (qs) and of ethanol production (qE), and overall ethanol and xylitol yields. For the calculation of the specific rates of substrate consumption and ethanol production, differential and integral methods were applied to the kinetic data. From the experimental results, it is deduced that both Candida and Pachysolen sequentially consume the two substrates, first D-glucose and then D-xylose. In both yeasts, the specific substrate-consumption rate diminished over each culture. The values qs and qE proved higher in Candida, although the higher ethanol yield was of the same order for both yeasts, close to 0.4 kg kgу.  相似文献   

8.
The capability of Halobacterium sp. NRC-1 to synthesize carboxyl ester hydrolases was investigated, and the effect of physicochemical conditions on the growth rate and production of esterases was evaluated. The haloarchaeon synthesized a carboxyl ester hydrolase, confirming the genomic prediction. This enzymatic activity was intracellularly produced as a growth-associated metabolite. Esterase activity was assayed using different p-nitrophenyl-esters and triacyl-glycerides, which showed a preference for hydrolyzing tributyrin. The archaeal growth rate and esterase production were significantly influenced by the pH and the NaCl concentration. An interaction effect between temperature and NaCl was also seen. The maximal growth rate and esterase production found for Halobacterium sp. NRC-1 were 0.136 h−1 (at 4.2 M NaCl, pH 6 and 44°C) and 1.64 U/l (at 4.6 M NaCl, pH 6 and 30°C), respectively. Furthermore, the effects of NaCl concentration, pH and temperature on enzyme activity were studied. Two maximal esterase activities were elucidated from the intracellular crude extract when it was incubated at different NaCl concentrations (1 M and 5 M) and at different pHs (6 and 7.5). This is the first report that shows experimentally the synthesis of carboxyl ester hydrolases by Halobacterium sp. NRC-1. This enzyme was found to be extremely halophilic (5 M NaCl) and thermophilic (80°C), making it very interesting for future investigations in non-aqueous biocatalysis.  相似文献   

9.
To date, all of microbial inulinases reported showed optimal activity at pH values ranging from 3.5 to 7.0. A bacterial strain, Marinimicrobium sp. LS-A18, showing high extracellular inulinolytic activity was isolated from a marine solar saltern of the Yellow Sea in China. Maximum enzyme activity was obtained at 55°C and pH 9.0, respectively. The inulinase activity was induced by inulin, but not by the other carbon sources employed. Under the optimal medium and culture condition, the highest inulinase activity, 14.6 U/ml, was obtained after 96 h of incubation at shake flask level. The optimal medium for inulinase production was MHI medium containing 4% inulin, 1% peptone and 5% NaCl, while the optimal culture condition for inulinase production were pH 7.5, temperature 37°C, agitation speed 210 rpm, medium volume 40 ml in 250 ml shake flask, and incubation time 96 h. A large amount of monosaccharides was released after inulin hydrolysis by the inulinase from strain LS-A18. This is the first report on alkaline inulinase production from microorganism.  相似文献   

10.
The use of the moss Physcomitrella patens as a production system for heterologous proteins requires highly standardised culture conditions. For this purpose a semi-continuous photoautotrophic bioreactor culture of Physcomitrella was established. This culture grew stably for 7 weeks in a 5-l bioreactor with a dilution rate of 0.22/day. Enrichment of the air for aeration in a batch bioreactor culture with 2% (v/v) CO2 resulted in an increase in the specific growth rate to 0.57/day. Changes in the pH of the semi-continuous bioreactor culture medium between pH 4.5 and pH 7.0 influenced protonema differentiation; however it did not negatively affect the growth rate compared to uncontrolled pH. The advantages of Physcomitrella as a system for the production of heterologous proteins in plants are discussed.  相似文献   

11.
More than 100 bacterial strains were isolated from composted polyester films and categorized into two groups, Actinomycetes (four genera) and Bacillus (three genera). Of these isolates, Thermobifida alba strain AHK119 (AB298783) was shown to possess the ability to significantly degrade aliphatic-aromatic copolyester film as well as decreasing the polymer particle sizes when grown at 50°C on LB medium supplemented with polymer particles, yielding terephthalic acid. The esterase gene (est119, 903 bp, encoding a signal peptide and a mature protein of 34 and 266 amino acids, respectively) was cloned from AHK119. The Est119 sequence contains a conserved lipase box (–G-X-S-X-G-) and a catalytic triad (Ser129, His207, and Asp175). Furthermore, Tyr59 and Met130 likely form an oxyanion hole. The recombinant enzyme was purified from cell-free extracts of Escherichia coli Rosetta-gami B (DE3) harboring pQE80L-est119. The enzyme is a monomeric protein of ca. 30 kDa, which is active from 20°C to 75°C (with an optimal range of 45 to 55°C) and in a pH range of 5.5 to 7.0 (with an optimal pH of 6.0). Its preferred substrate among the p-nitrophenyl acyl esters (C2 to C8) is p-nitrophenyl hexanoate (C6), indicating that the enzyme is an esterase rather than a lipase.  相似文献   

12.
A common cylindropuntia in the northwestern Sonoran Desert, Opuntia acanthocarpa, was investigated for the following hypotheses: its lower elevational limit is set by high temperatures, so its seedlings require nurse plants; its upper elevational limit is set by freezing; spine shading is the least at intermediate elevations; and changes in plant size and frequency with elevation reflect net CO2 uptake ability. For four elevations ranging from 230 m to 1,050 m, the mean height of O. acanthocarpa approximately doubled and its frequency increased 14-fold. Nurse plants were associated with only 4% of O. acanthocarpa less than 20 cm tall at the two lower elevations compared with 57% at 1,050 m, where putative freezing damage was especially noticeable, suggesting that nurse plants protect from low temperature damage. Spine shading of the stem doubled from the lowest to the highest elevation. Net CO2 uptake, which followed a Crassulacean acid metabolism pattern, was maximal at day/night air temperatures of 25/15°C and was halved by 4 weeks of drought and by reducing the photosynthetic photon flux from 30 to 12 mol m-2 day-1. The root system of O. acanthocarpa was shallow, with a mean depth of only 9 cm for the largest plants. Root growth was substantial and similar for plants at 25/15°C and 35/25°C, decreasing over 70-fold at 15/5°C and 45/35°C. Based on cellular uptake of the vital stain neutral red, neither roots nor stems tolerated tissue temperatures below -5°C for 1 h while both showed substantial high temperature acclimation, roots tolerating 1 h at 61°C and stems 1 h at 70°C for plants grown at 35/25°C. The increase in height and frequency of O. acanthocarpa with elevation apparently reflected both a greater ability for net CO2 uptake and greater root growth and hence water uptake. This species achieves its greatest ecological success at elevations where it becomes vulnerable to low temperature damage.  相似文献   

13.
To utilize intracellular endoinulinase for inulo-oligosaccharide (IOS) production from inulin, the endoinulinase gene (inu1) of Pseudomonas sp. was successfully cloned into the plasmid pBR322 by using EcoRI restriction endoinulinase and E. coli HB101 as a host strain. The endoinulinase from E. coli HB101/pKMG50 was constitutively expressed, showing similar reaction modes as compared to those of the original strain. However, some critical differences existed in optimal reaction conditions and oligosaccharide compositions between the two products catalyzed by the native enzyme of original strain and those by intact cells from recombinant cells. The IOS compositions produced by recombinant E. coli were quite different due to the diffusional restriction of the substrate and products within the cell wall. Optimal reaction conditions for batchwise production of IOS were as follow : optimum temperature, 55v°C; pH, 7.5; substrate concentration, 100 g/l inulin; enzyme dosage, 20 units/g substrate. Continuous production of IOS from inulin was also carried out at 50v°C using a bioreactor packed with the recombinant cells immobilized on calcium alginate gel. The optimal feed concentration and the feed flow rate were 100 g/l inulin and 0.6 hу as a superficial space velocity, respectively. Under the optimum operation conditions, continuous production of IOS was successfully performed with productivity of 166.7 g/l·h for 15 days at 50v°C without significant loss of initial activity.  相似文献   

14.
Post-storage gas exchange parameters like CO2 assimilation, stomatal conductance, transpiration, water use efficiency and intercellular CO2 concentrations, together with several chlorophyll a fluorescence parameters: Fo, Fv, Fv/Fm, Fm/Fo and Fv/Fo were examined in radiata pine (Pinus radiata D. Don) seedlings that were stored for 1, 8 or 15 days at 4° or 10°C with or without soil around the roots. Results were analysed in relation to post-storage water potential and electrolyte leakage in order to forecast their vitality (root growth potential) following cold storage, and post-planting survival potential under optimal conditions. During storage at 4° and 10°C, photosynthesis was reduced, being more pronounced in bare-root seedlings than in seedlings with soil around the roots. The depletion of CO2 assimilation seemed not to be solely a stomatal effect as effects on chloroplasts contributed to this photosynthetic inhibition. Thus, the fall in the ratios Fv/Fm, Fv/Fo and Fm/Fo indicated photochemical apparatus damage during storage. Photosynthetic rate was positively correlated with the root growth index and new root length showing that new root growth is dependent primarily on current photosynthesis. Pre-planting exposure of bare-root radiata pine seedlings to temperatures of 10°C for more than 24 h during transportation or storage is not recommended.  相似文献   

15.
A novel esterase gene (estI) of Lactobacillus casei CL96 was localized on a 3.3-kb BamHI DNA fragment containing an open reading frame (ORF) of 1,800 bp. The ORF of estI was isolated by PCR and expressed in Escherichia coli, the methylotrophic bacterium Methylobacterium extorquens, and the methylotrophic yeast Pichia pastoris under the control of T7, methanol dehydrogenase (PmxaF), and alcohol oxidase (AOX1) promoters, respectively. The amino acid sequence of EstI indicated that the esterase is a novel member of the GHSMG family of lipolytic enzymes and that the enzyme contains a lipase-like catalytic triad, consisting of Ser325, Asp516, and His558. E. coli BL21(DE3)/pLysS containing estI expressed a novel 67.5-kDa protein corresponding to EstI in an N-terminal fusion with the S·tag peptide. The recombinant L. casei CL96 EstI protein was purified to electrophoretic homogeneity in a one-step affinity chromatography procedure on S-protein agarose. The optimum pH and temperature of the purified enzyme were 7.0 and 37°C, respectively. Among the pNP (p-nitrophenyl) esters tested, the most selective substrate was pNP-caprylate (C8), with Km and kcat values of 14 ± 1.08 μM and 1,245 ± 42.3 S−1, respectively.  相似文献   

16.
Some properties of pyridoxine glucoside-synthesizing enzyme were studied using the partially and highly purified enzyme preparations from Micrococcus sp. No. 431.

The enzyme was stable at pH 7.0 and between 0°C and 30°C. The maximal activity was obtained at pH 8.0 and 37°C. Besides sucrose, phenyl-α-d-glucoside and maltose served as glucosyl donor. Of vitamin B6 compounds tested, only pyridoxine served as glucosyl acceptor. The enzyme activity was inhibited by PCMB and heavy metal ions, and the inhibition was prevented by 2-mercaptoethanol, indicating the enzyme would be a sulfhydryl enzyme. The activity was not affected by chelating agents and not activated by metal ions.  相似文献   

17.
Yoldia hyperborea is a deposit-feeding circumpolar protobranch that also inhabits muddy sediments of the cold water boreal system of Conception Bay, Newfoundland, Canada. Little is known about this species, despite its wide distribution and frequent high density in the benthos. The present work deals with oxygen consumption and ammonia excretion under cold ambient conditions. Y. hyperborea showed low basal metabolism [0.051 ml O2 hу·(g dry weight)у, T=у°C] and low ammonia excretion rates [4.212 µg·NH4-N·hу·(g dry weight)у, T=у°C]. Low metabolic activity could prove a useful strategy during periods of low food availability. In addition, Y. hyperborea was able to regulate its O2 consumption rate at very low pO2 levels, which may be advantageous for a species that may experience periods of hypoxia.  相似文献   

18.
In this study, we report the characterization of a protein from Aspergillus oryzae, exhibiting sequence identity with paraben esterase from the genus Aspergillus. The coding region of 1,586 bp, including a 77-bp intron, encoded a protein of 502 amino acids. The gene without the signal peptide of 19 amino acids was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0–8.0 and 30 °C, respectively, and was stable at the pH range of 7.0–10.0 and up to 40 °C. The optimal substrate for hydrolysis by the purified recombinant protein, among a panel of α-naphthyl esters (C2–C16), was α-naphthyl butyrate (C4), with activity of 0.16 units/mg protein. The considerable hydrolytic activity of the purified recombinant enzyme toward tributyrin was determined. However, no paraben esterase activity was detected toward the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid. In addition, no activity was detected toward the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids that would indicate feruloyl esterase activity.  相似文献   

19.
Abstract

Truffles are symbiotic hypogeous edible fungi (form of mushroom) that form filamentous mycelia in their initial phase of the growth cycle as well as a symbiotic association with host plant roots. In the present study, Tuber maculatum mycelia were isolated and tested for extracellular amylase production at different pH on solid agar medium. Furthermore, the mycelium was subjected to submerged fermentation for amylase production under different culture conditions such as variable carbon sources and their concentrations, initial medium pH, and incubation time. The optimized conditions after the experiments included soluble starch (0.5% w/v), initial medium pH of 7.0, and incubation time of 7 days, at room temperature (22?±?2?°C) under static conditions which resulted in 1.41?U/mL of amylase. The amylase thus obtained was further characterized for its biocatalytic properties and found to have an optimum activity at pH 5.0 and a temperature of 50?°C. The enzyme showed good thermostability at 50?°C by retaining 98% of the maximal activity after 100?min of incubation. The amylase activity was marginally enhanced in presence of Cu2+ and Na+ and slightly reduced by K+, Ca2+, Fe2+, Mg2+, Co2+, Zn2+, and Mn2+ ions at 1?mM concentration.  相似文献   

20.
Six-day incubation was most suitable for production of pectolytic and cellulolytic enzymes byFusarium on different culture media. Czapek’s medium favoured maximum production of polygalacturonase (PG) and cellulase (Cx), peptone dextrose gave highest yields of pectin methyl galacturonase (PMG) withF. oxysporum. Cole’s medium was found to be poor for the enzyme production by both organisms. A positive correlation was observed between the growth rate of the pathogenic forms and their enzyme production. InF. oxysporum the PG secretion was maximum at pH 4.5 and inF. moniliforme at pH 5.0. PMG production optimum was at pH 5.5. No PG and PMG were produced above pH 7. InF. oxysporum the Cx activity was highest at pH 5.5 and inF. moniliforme at pH 4.5. Maximum PG and PMG activities were recorded at 35 °C in both pathogens. The Cx activity of both organisms was maximum at 45 °C but some carboxymethyl cellulose hydrolysis was found even at 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号