首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5′-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5′-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P < 0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.  相似文献   

2.
By using two highly conserved region of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species, Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.  相似文献   

3.
By using two highly conserved region of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species, Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.  相似文献   

4.
Nucleic acid sandwich assays improve low-density array analysis through the addition of a capture probe and a specific label, increasing specificity and sensitivity. Here, we employ photo-initiated porous polymer monolith (PPM) as a high-surface area substrate for sandwich assay analysis. PPMs are shown to enhance extraction efficiency by 20-fold from 2 μl of sample. We further compare the performance of labeled linear probes, quantum dot labeled probes, molecular beacons (MBs) and tentacle probes (TPs). Each probe technology was compared and contrasted with traditional hybridization methods using labeled sample. All probes demonstrated similar sensitivity and greater specificity than traditional hybridization techniques. MBs and TPs were able to bypass a wash step due to their ‘on–off’ signaling mechanism. TPs demonstrated reaction kinetics 37.6 times faster than MBs, resulting in the fastest assay time of 5 min. Our data further indicate TPs had the most sensitive detection limit (<1 nM) as well as the highest specificity (>1 × 104 improvement) among all tested probes in these experiments. By matching the enhanced extraction efficiencies of PPM with the selectivity of TPs, we have created a format for improved sandwich assays.  相似文献   

5.
Rat genome was assayed for the presence of hsp70 gene-related sequences. Southern blots prepared from rat DNA digested with EcoRI or HindIII restriction endonucleases were hybridized with mouse, human and fruit fly hsp 70 gene probes at increasing stringencies. At the stringency which allows sequences divergent up to about 30% to form stable complexes all three probes detected 25–30 restriction fragments. Increased stringency of the hybridization reduced the number of detectable bands to a few and among them the DNA fragments hybridizing specifically either with mouse or human hsp70 gene probes were detected. Most of the genomic fragments containing hsp70 gene-related sequences were subsequently isolated by screening the rat genomic library with mouse hsp70 gene probe. 168 positive clones were plaque purified and on the basis of the restriction and hybridization pattern we deduced that inserts represented 20 different genomic regions. Partial restriction maps of all isolated genomic fragments were constructed and regions containing hsp70 gene related as well as highly repetitive DNA sequences were localized. A putative sequence rearrangement in the proximity of the hsp70 gene-related sequence was detected in one of the isolated genomic segments.  相似文献   

6.
The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments.  相似文献   

7.
Six 16S rRNA-targeted oligonucleotide probes were designed, validated, and used to quantify predominant groups of anaerobic bacteria in human fecal samples. A set of two probes was specific for species of the Bacteroides fragilis group and the species Bacteroides distasonis. Two others were designed to detect species of the Clostridium histolyticum and the Clostridium lituseburense groups. Another probe was designed for the genera Streptococcus and Lactococcus, and the final probe was designed for the species of the Clostridium coccoides-Eubacterium rectale group. The temperature of dissociation of each of the probes was determined. The specificities of the probes for a collection of target and reference organisms were tested by dot blot hybridization and fluorescent in situ hybridization (FISH). The new probes were used in initial FISH experiments to enumerate human fecal bacteria. The combination of the two Bacteroides-specific probes detected a mean of 5.4 × 1010 cells per g (dry weight) of feces; the Clostridium coccoides-Eubacterium rectale group-specific probe detected a mean of 7.2 × 1010 cells per g (dry weight) of feces. The Clostridium histolyticum, Clostridium lituseburense, and Streptococcus-Lactococcus group-specific probes detected only numbers of cells ranging from 1 × 107 to 7 × 108 per g (dry weight) of feces. Three of the newly designed probes and three additional probes were used in further FISH experiments to study the fecal flora composition of nine volunteers over a period of 8 months. The combination of probes was able to detect at least two-thirds of the fecal flora. The normal biological variations within the fecal populations of the volunteers were determined and indicated that these variations should be considered when evaluating the effects of agents modulating the flora.  相似文献   

8.
To investigate the binding of 5′–CpG–3′ sequences by small molecules, two pyrrole (Py)–imidazole (Im) hairpin polyamides, PyImPyIm–γPyImPyIm–βDp (1) and PyIm–βIm–γPyIm–β–Im–β–Dp (2), which recognize the sequence 5′–CGCG–3′, were synthesized. The binding affinities of the 5′–CGCG–3′ sequence to the Py–Im hairpin polyamides were measured by surface plasmon resonance (SPR) analysis. SPR data revealed that dissociation equilibrium constants (Kd) of polyamides 1 and 2 were 1.1 (± 0.3) × 10–6 M and 1.7 (± 0.4) × 10–8 M, respectively. Polyamide 2 possesses great binding affinity for this sequence, 65-fold higher than polyamide 1. Moreover, when all cytosines in 5′–CpGpCpG–3′ were replaced with 5-methylcytosines (mCs), the Kd value of polyamide 2 increased to 5.8 (± 0.7) × 10–9 (M), which indicated about 3-fold higher binding than the unmethylated 5′–CGCG–3′ sequence. These results suggest that polyamide 2 would be suitable to target CpG-rich sequences in the genome.  相似文献   

9.

Background

The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins.

Methods/Findings

We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20–75%). Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development.

Conclusions

Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.  相似文献   

10.
Although the dot-blot-SNP technique is a laborsaving, cost-effective method for SNP genotyping of a large number of plants, the synthesis of 5′-digoxigenin (DIG)-labeled oligonucleotides for use as probes is still costly. We developed two probe-labeling methods for this technique, one being digoxigenin labeling of oligonucleotides by PCR (PCR-DIG labeling) and the other being hybridization using a bridge probe and a 5′-DIG-labeled oligonucleotide (bridge hybridization). Bridge hybridization detected allele-specific signals under hybridization conditions similar to those for the 5′-DIG-labeled oligonucleotides and biotin-labeled oligonucleotides, while signals were detected only under a lower stringency condition by PCR-DIG labeling. As a method for genotyping using many markers at one time, two methods, i.e., PCR using mixed primer pairs and hybridization using mixed probes, were examined with successful results. Eighty-five SNP markers designed for genotyping of rice cultivars detected allele-specific signals, the genotyping results corresponding to the previously reported ones.  相似文献   

11.
Fatty acid composition is an important phenotypic trait in pigs as it affects nutritional, technical and sensory quality of pork. Here, we reported a genome-wide association study (GWAS) for fatty acid composition in the longissimus muscle and abdominal fat tissues of 591 White Duroc×Erhualian F2 animals and in muscle samples of 282 Chinese Sutai pigs. A total of 46 loci surpassing the suggestive significance level were identified on 15 pig chromosomes (SSC) for 12 fatty acids, revealing the complex genetic architecture of fatty acid composition in pigs. Of the 46 loci, 15 on SSC5, 7, 14 and 16 reached the genome-wide significance level. The two most significant SNPs were ss131535508 (P = 2.48×10−25) at 41.39 Mb on SSC16 for C20∶0 in abdominal fat and ss478935891 (P = 3.29×10−13) at 121.31 Mb on SSC14 for muscle C18∶0. A meta-analysis of GWAS identified 4 novel loci and enhanced the association strength at 6 loci compared to those evidenced in a single population, suggesting the presence of common underlying variants. The longissimus muscle and abdominal fat showed consistent association profiles at most of the identified loci and distinct association signals at several loci. All loci have specific effects on fatty acid composition, except for two loci on SSC4 and SSC7 affecting multiple fatness traits. Several promising candidate genes were found in the neighboring regions of the lead SNPs at the genome-wide significant loci, such as SCD for C18∶0 and C16∶1 on SSC14 and ELOVL7 for C20∶0 on SSC16. The findings provide insights into the molecular basis of fatty acid composition in pigs, and would benefit the final identification of the underlying mutations.  相似文献   

12.
利用AA染色体组栽培稻的中高度重复序列C0t-1 DNA和基因组DNA作为探针,通过荧光原位杂交技术对宽叶野生稻(Oryza latifolia)(CCDD染色体组)进行了比较基因组分析。结果显示,在宽叶野生稻染色体上,C0t-1 DNA的杂交信号没有基因组DNA的杂交信号明显;杂交信号主要分布在着丝粒、近着丝粒及端粒区域;随着洗脱严谨度的不同,杂交信号呈现出较高的种特异性。本研究以不同洗脱严谨度下的荧光原位杂交结果为依据,对宽叶野生稻进行的核型分析,可进一步提高稻属染色体识别的准确性。  相似文献   

13.
A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5′-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5′-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P < 0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.  相似文献   

14.
A sensitive nonisotopic solution hybridization assay for detection of RNA is described and characterized using a pSP65 plasmid model system. The assay procedure is based on a hybridization reaction in solution between a biotinylated DNA probe and a target RNA. The biotin-labeled hybrids are captured on a microtiter plate coated with an antibody to biotin. Bound DNA-RNA hybrids are detected by an immunoreaction with an enzyme-labeled monoclonal antibody specifically directed against DNA-RNA heteropolymers and the hybrids are quantitatively measured with the addition of a fluorogenic substrate. Optimal conditions under which to perform the assay were hybridization time, 1000 min; temperature, 75 degrees C; probe concentration, 0.2 microgram/ml; extent of probe biotinylation, 6.7%; buffer stringency, 2x SSC. A bisulfite-modified DNA probe was compared to nick-translated probes synthesized with reporter groups of different lengths (bio-11-dUTP or bio-19-dUTP). All probes could detect 10 pg/ml of target RNA. The presence of nonhomologous DNA or RNA sequences reduced the sensitivity of RNA detection by one half-log to 32 pg/ml (1.6 pg/assay).  相似文献   

15.
We herein report the results of a whole genome scan performed in a Piétrain × Large White intercross counting 525 offspring to map QTL influencing economically important growth and carcass traits. We report experiment-wide significant lod scores (> 4.6 for meatiness and fat deposition on chromosome SSC2, and for average daily gain and carcass length on chromosome SSC7. Additional suggestive lod scores (> 3.3) for fat deposition are reported on chromosomes SSC1, SSC7 and SSC13. A significant dominance deviation was found for the QTL on SSC1, while the hypothesis of an additive QTL could not be rejected for the QTL on SSC7 and SSC13. No evidence for imprinted QTL could be found for QTL other than the one previously reported on SSC2.  相似文献   

16.
吴绮  覃瑞  李刚  刘虹 《植物科学学报》2010,28(6):654-659
利用AA染色体组栽培稻的中高度重复序列C0t-1 DNA和基因组DNA作为探针,通过荧光原位杂交技术对宽叶野生稻(Oryza latifolia)(CCDD染色体组)进行了比较基因组分析。结果显示,在宽叶野生稻染色体上,C0t-1 DNA的杂交信号没有基因组DNA的杂交信号明显;杂交信号主要分布在着丝粒、近着丝粒及端粒区域;随着洗脱严谨度的不同,杂交信号呈现出较高的种特异性。本研究以不同洗脱严谨度下的荧光原位杂交结果为依据,对宽叶野生稻进行的核型分析,可进一步提高稻属染色体识别的准确性。  相似文献   

17.
Empirical Establishment of Oligonucleotide Probe Design Criteria   总被引:11,自引:0,他引:11  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of ≤85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (≤15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than −30 kcal/mol for 50-mer probes or −40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

18.
A novel label-free biosensor concept based on surface plasmon-enhanced diffraction by micro- patterned interfaces was applied to the study of hybridization reactions of target DNA oligonucleotides (15mers and 75mers) from solution to probe DNA oligonucleotides attached via streptavidin to the sensor surface. The self-referencing and quadratic signal amplification mechanism of the sensor allowed highly sensitive detection of the hybridization process. Association and dissociation processes of DNA targets could be recorded in real time and used for the quantification of their binding affinities, which differ considerably with a single base pair mismatch. An equilibrium titration approach was also applied in order to obtain the binding affinities for 15mer targets, yielding similar affinity values. The hybridization efficiencies were found to be higher for the 15mers than for the 75mers, although the latter contained the same recognition sequences. The hybridization efficiency was shown to depend on the probe density and reached nearly 100% for the 15mer fully complementary targets at a probe density of ~1.2 × 1012 molecules/cm2. Using the assay as an end-point determination method, the lowest detectable coverage of a 15mer oligonucleotide was at least ~1.1 × 1011 molecules/cm2. The diffraction sensing concept offers a completely novel way to integrate a reference channel in large-scale, label-free screening applications, to improve the stability and to enhance the sensitivity of microarray read-out systems.  相似文献   

19.
Amplification and fluorescent genotyping of the cystic fibrosis F508del locus was achieved from human genomic DNA in less than 30 min. The hybridization of adjacent fluorescent probes at the mutation site was monitored by resonance energy transfer between fluorescein and Cy5 during heating or cooling. Characteristic curves were obtained for each genotype; the first derivative of these fluorescent curves has a maximum at an apparent hybridization temperature (Tm) that is specific for each probe/allele duplex. The direction and rate of temperature change determines the difference between the apparent Tm and the true equilibrium Tm. One hundred and five sample were genotyped for the F508del cystic fibrosis mutation by heating and cooling curve profiles. These genotypes were validated by allele-specific amplification. Two fluorescein hybridization probes were designed to match the wild-type sequence perfectly from either codons 502 to 513 or from 504 to 511 on the cystic fibrosis transconductance regulator gene of chromosome 7. While genotyping for the F508del, an allele with the F508C base change was detected. For both F508del and F508C variants, the Tm shift from wild type was greater with a 24-mer probe than with a 35-mer probe. Fluorescent monitoring of hybridization probes is a versatile technique that can detect unexpected sequence alterations.  相似文献   

20.
DNA resequencing arrays enable rapid acquisition of high-quality sequence data. This technology represents a promising platform for rapid high-resolution genotyping of microorganisms. Traditional array-based resequencing methods have relied on the use of specific PCR-amplified fragments from the query samples as hybridization targets. While this specificity in the target DNA population reduces the potential for artifacts caused by cross-hybridization, the subsampling of the query genome limits the sequence coverage that can be obtained and therefore reduces the technique's resolution as a genotyping method. We have developed and validated an Affymetrix Inc. GeneChip® array-based, whole-genome resequencing platform for Francisella tularensis, the causative agent of tularemia. A set of bioinformatic filters that targeted systematic base-calling errors caused by cross-hybridization between the whole-genome sample and the array probes and by deletions in the sample DNA relative to the chip reference sequence were developed. Our approach eliminated 91% of the false-positive single-nucleotide polymorphism calls identified in the SCHU S4 query sample, at the cost of 10.7% of the true positives, yielding a total base-calling accuracy of 99.992%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号