首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of fosfomycin resistance protein FosA from transposon Tn2921 has been established at a resolution of 2.5 A. The protein crystallized without bound Mn(II) and K+, ions crucial for efficient catalysis, providing a structure of the apo enzyme. The protein maintains the three-dimensional domain-swapped arrangement of the paired betaalphabetabetabeta-motifs observed in the genomically encoded homologous enzyme from Pseudomonas aeruginosa (PA1129). The basic architecture of the active site is also maintained, despite the absence of the catalytically essential Mn(II). However, the absence of K+, which has been shown to enhance enzymatic activity, appears to contribute to conformational heterogeneity in the K(+)-binding loops.  相似文献   

2.
The genomically encoded fosfomycin resistance protein from Pseudomonas aeruginosa (FosA(PA)) utilizes Mn(II) and K(+) to catalyze the addition of glutathione (GSH) to C1 of the antibiotic rendering it inactive. Although this protein has been structurally and kinetically characterized with respect to the substrate, fosfomycin, questions remain regarding how the enzyme binds the thiol substrate, GSH. Computational studies have revealed a potential GSH binding site in FosA(PA) that involves six electrostatic or hydrogen-bonding interactions with protein side-chains as well as six additional residues that contribute van der Waals interactions. A strategically placed tyrosine residue, Y39, appears to be involved in the ionization of GSH during catalysis. The Y39F mutant exhibits a 13-fold reduction of catalytic activity (k(cat)=14+/-2s(-1)), suggesting a role in the ionization of GSH. Mutation of five other residues (W34, Q36, S50, K90, and R93) implicated in ionic of hydrogen-bonding interactions resulted in enzymes with reduced catalytic efficiency, affinity for GSH, or both. The mutant enzymes were also found to be less effective resistant proteins in the biological context of Escherichia coli. The more conservative W34H mutant has native-like catalytic efficiency suggesting that the imidazole NH group can replace the indole group of W34 that is important for GSH binding. In the absence of co-crystal structural data with the thiol substrate, these results provide important insights into the role of GSH in catalysis.  相似文献   

3.
Bernat BA  Armstrong RN 《Biochemistry》2001,40(42):12712-12718
The fosfomycin resistance protein, FosA, catalyzes the Mn(2+)-dependent addition of glutathione to the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid, rendering the antibiotic inactive. The enzyme is a homodimer of 16 kDa subunits, each of which contains a single mononuclear metal site. Stopped-flow absorbance/fluorescence spectrometry provides evidence suggesting a complex kinetic mechanism for the acquisition of Mn(2+) by apoFosA. The binding of Mn(H(2)O)(6)(2+) to apoFosA alters the UV absorption and intrinsic fluorescence characteristics of the protein sufficiently to provide sensitive spectroscopic probes of metal binding. The acquisition of metal is shown to be a multistep process involving rapid preequilibrium formation of an initial complex with release of approximately two protons (k(obsd) > or = 800 s(-1)). The initial complex either rapidly dissociates or forms an intermediate coordination complex (k > 300 s(-1)) with rapid isomerization (k > or = 20 s(-1)) to a set of tight protein-metal complexes. The observed bimolecular rate constant for formation of the intermediate coordination complex is 3 x 10(5) M(-1) s(-1). The release of Mn(2+) from the protein is slow (k approximately 10(-2) s(-1)). The kinetic results suggest a more complex chelate effect than is typically observed for metal binding to simple multidentate ligands. Although the addition of the substrate, fosfomycin, has no appreciable effect on the association kinetics of enzyme and metal, it significantly decreases the dissociation rate, suggesting that the substrate interacts directly with the metal center.  相似文献   

4.
The fosfomycin resistance protein FosA is a member of a distinct superfamily of metalloenzymes containing glyoxalase I, extradiol dioxygenases, and methylmalonyl-CoA epimerase. The dimeric enzyme, with the aid of a single mononuclear Mn2+ site in each subunit, catalyzes the addition of glutathione (GSH) to the oxirane ring of the antibiotic, rendering it inactive. Sequence alignments suggest that the metal binding site of FosA is composed of three residues: H7, H67, and E113. The single mutants H7A, H67A, and E113A as well as the more conservative mutants H7Q, H67Q, and E113Q exhibit marked decreases in the ability to bind Mn2+ and, in most instances, decreases in catalytic efficiency and the ability to confer resistance to the antibiotic. The enzyme also requires the monovalent cation K+ for optimal activity. The K+ ion activates the enzyme 100-fold with an activation constant of 6 mM, well below the physiologic concentration of K+ in E. coli. K+ can be replaced by other monovalent cations of similar ionic radii. Several lines of evidence suggest that the K+ ion interacts directly with the active site. Interaction of the enzyme with K+ is found to be dependent on the presence of the substrate fosfomycin. Moreover, the E113Q mutant exhibits a kcat which is 40% that of wild-type in the absence of K+. This mutant is not activated by monovalent cations. The behavior of the E113Q mutant is consistent with the proposition that the K+ ion helps balance the charge at the metal center, further lowering the activation barrier for addition of the anionic nucleophile. The fully activated, native enzyme provides a rate acceleration of >10(15) with respect to the spontaneous addition of GSH to the oxirane.  相似文献   

5.
The metalloglutathione transferase FosA catalyzes the conjugation of glutathione to carbon-1 of the antibiotic fosfomycin, rendering it ineffective as an antibacterial drug. Codon randomization and selection for the ability of resulting clones to confer fosfomycin resistance to Escherichia coli were used to identify residues critical for FosA function. Of the 24 codons chosen for randomization, 16 were found to be essential because only the wild type amino acid was selected. These included ligands to the Mn(2+) and the K(+), residues that furnish hydrogen bonds to fosfomycin, and residues located in a putative glutathione/fosfomycin-binding site. The remaining eight positions randomized were tolerant to substitutions. Site-directed mutagenesis of some of the essential and tolerant amino acids to alanine was performed, and the activity of the purified proteins was determined. Mutation of the residues that are within hydrogen bonding distance to the oxirane or phosphonate oxygens of fosfomycin resulted in variants with very low or no activity. Mutation of Ser(94), which bridges one of the phosphonate oxygens with a potassium ion, resulted in insoluble protein. The Y39A mutation in the putative glutathione-binding site resulted in a 4-fold increase in the apparent K(m) for glutathione. Only two of the amino acids in the substrate-binding site are conserved in the related fosfomycin resistance proteins FosB and FosX, whereas no amino acids in the putative glutathione-binding site are conserved.  相似文献   

6.
The steady-state kinetic data show that 3-hydroxy-4-phenylthiazole-2(3H)-thione (3H4PTT) is a potent tight-binding inhibitor for dopamine beta-monooxygenase (DbetaM) with a dissociation constant of 0.9 nM. Ackermann-Potter plots of the enzyme dependence of the inhibition revealed that the stoichiometry of the enzyme inhibition by 3H4PTT is 1:1. Pre-steady-state progress curves at varying inhibitor with fixed reductant and enzyme concentrations clearly show the slow binding behavior of the inhibitor. The observed kinetic behavior is consistent with the apparent direct formation of the tightly bound E x I* complex. The k(on) and k(off) for 3H4PTT which were determined under pre-steady-state conditions at variable inhibitor concentrations were found to be (1.85 +/- 0.07) x 10(6) M(-1) s(-1) and (1.9 +/- 0.6) x 10(-3) s(-1), respectively. The dissociation constant calculated from these rates was similar to that determined under steady-state conditions, confirming that 3H4PTT is a kinetically well-behaved inhibitor. The steady-state as well as pre-steady-state kinetic studies at variable DMPD concentrations show that the inhibition is competitive with respect to the reductant, demonstrating the exclusive interaction of 3H4PTT with the oxidized form of the enzyme. The kinetic behavior and the structural properties of 3H4PTT are consistent with the proposal that the E x 3H4PTT complex may mimic the transition state for the product (protonated) release step of the enzyme. Therefore, 3H4PTT could be used as a convenient probe to examine the properties of the E x P complex of the DbetaM reaction and also as an active site titrant for the oxidized enzyme.  相似文献   

7.
Nagarajan R  Pratt RF 《Biochemistry》2004,43(30):9664-9673
Serine beta-lactamases are inhibited by phosphonate monoesters in a reaction that involves phosphonylation of the active site serine residue. This reaction is much more rapid than the hydrolysis of these inhibitors in solution under the same conditions. The beta-lactamase active site therefore must have the ability to stabilize not only the anionic tetrahedral transition states of the acyl transfer reactions of substrates but also the pentacoordinated transition state(s) of phosphyl transfer reactions. A series of p-nitrophenyl arylphosphonates have been synthesized and the rate constants for their inhibition of the class C beta-lactamase of Enterobacter cloacae P99 determined. There is no direct correlation between these rate constants and the dissociation constants of analogous aryl boronic acids, where the latter are believed to generate good tetrahedral transition state analogue structures. Thus, the mode of stabilization of pentacoordinated phosphorus transition states by the beta-lactamase active site is qualitatively different from that of tetrahedral transition states. Molecular modeling suggests that the difference arises from different positioning of the side chain and of one of the oxygen ligands. In principle, the quality of the stable tetrahedral phosphonate complex as a transition state analogue structure can be assessed from the effect of its formation on the stability of the protein. Phosphonylation of the P99 beta-lactamase, however, had little effect on the stability of the protein, as measured both by thermal and guanidine hydrochloride denaturation. Consideration of the results of similar experiments with the Staphylococcus aureus PC1 beta-lactamase, where considerable stabilization is observed in thermal melting and, to a lesser degree, in formation of the molten globule in guanidine hydrochloride, but not in the complete unfolding transition in guanidine, suggests that results from the method may be strongly influenced by the interactions of the ligand with its environment in the unfolded state of the protein. Thus, quantitative estimates of the quality of a covalently bonded transition state analogue cannot generally be achieved by this method.  相似文献   

8.
K H R?hm 《FEBS letters》1989,250(2):191-194
Butylmalonate (butyl propanedioic acid) is a slow-binding inhibitor of porcine renal aminoacylase I (EC 3.5.1.14), causing transients of activity with half-times of more than 10 min. At 25°C and pH 7.0, the dissociation rate of the complex is approximately 6 × 10−4 s−1, while the rate constant of complex formation is in the order of 20 M−1·s−1. In good agreement with these data, steady-state kinetics yield an estimated inhibition constant around 100 μM. Molecular mechanics calculations showed that conformation and charge distribution of butylmalonate are strikingly similar to those of the putative transition state of aminoacylase catalysis.  相似文献   

9.
Protein kinase C functions prominently in cell regulation via its pleiotropic role in signal transduction processes. Certain oncogene products resemble elements involved in transmembrane signaling, elevate cellular sn-1,2-diacylglycerol second messenger levels, and activate protein kinase C. Sangivamycin was unique among the nucleoside compounds tested in its ability to potently inhibit protein kinase C activity. Inhibition was competitive with respect to ATP for both protein kinase C and the catalytic fragment of protein kinase C prepared by trypsin digestion. Sangivamycin was a noncompetitive inhibitor with respect to histone and lipid cofactors (phosphatidylserine and diacylglycerol). Sangivamycin inhibited native protein kinase C and the catalytic fragment identically, with apparent Ki values of 11 and 15 microM, respectively. Sangivamycin was an effective an inhibitor of protein kinase C as H-7, an isoquinolinsulfonamide. Sangivamycin did not inhibit [3H]phorbol-12,13-dibutyrate binding to protein kinase C. Sangivamycin did not exert its action through the lipid binding/regulatory domain; inhibition was not affected by the presence of lipid or detergent. Unlike H-7, sangivamycin selectively inhibited protein kinase C compared to cAMP-dependent protein kinase. The discovery that protein kinase C is inhibited by sangivamycin and other antitumor agents suggests that protein kinase C may be a target for rational design of antitumor compounds.  相似文献   

10.
Eukaryotic protein kinases catalyze the phosphoryl transfer of the gamma-phosphate of ATP to the serine, threonine, or tyrosine residue of protein substrates. The catalytic mechanism of phospho-CDK2/cyclin A (pCDK2/cyclin A) has been probed with structural and kinetic studies using the trigonal NO(3)(-) ion, which can be viewed as a mimic of the metaphosphate transition state. The crystal structure of pCDK2/cyclin A in complex with Mg(2+)ADP, nitrate, and a heptapeptide substrate has been determined at 2.7 A. The nitrate ion is located between the beta-phosphate of ADP and the hydroxyl group of the serine residue of the substrate. In one molecule of the asymmetric unit, the nitrate is close to the beta-phosphate of ADP (distance from the nitrate nitrogen to the nearest beta-phosphate oxygen of 2.5 A), while in the other subunit, the nitrate is closer to the substrate serine (distance of 2.1 A). Kinetic studies demonstrate that nitrate is not an effective inhibitor of protein kinases, consistent with the structural results that show the nitrate ion makes few stabilizing interactions with CDK2 at the catalytic site. The binding of orthovanadate was also investigated as a mimic of a pentavalent phosphorane intermediate of an associative mechanism for phosphoryl transfer. No vanadate was observed bound in a 3.4 A resolution structure of pCDK2/cyclin A in the presence of Mg(2+)ADP, and vanadate did not inhibit the kinase reaction. The results support the notion that the protein kinase reaction proceeds through a mostly dissociative mechanism with a trigonal planar metaphosphate intermediate rather than an associative mechanism that involves a pentavalent phosphorane intermediate.  相似文献   

11.
Penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis. The development of new PBP inhibitors is a potentially viable strategy for developing new antibacterial agents. Several potential transition state analogue inhibitors for the PBPs were synthesized, including peptide chloromethyl ketones, trifluoromethyl ketones, aldehydes, and boronic acids. These agents were characterized chemically, stereochemically, and as inhibitors of a set of low molecular mass PBPs: Escherichia coli (EC) PBP 5, Neisseria gonorrhoeae (NG) PBP 3, and NG PBP 4. A peptide boronic acid was the most effective PBP inhibitor in the series, with a preference observed for a d-boroAla-based over an l-boroAla-based inhibitor, as expected given that physiological PBP substrates are based on d-Ala at the cleavage site. The lowest K(I) of 370 nM was obtained for NG PBP 3 inhibition by Boc-l-Lys(Cbz)-d-boroAla (10b). Competitive inhibition was observed for this enzyme-inhibitor pair, as expected for an active site-directed inhibitor. For the three PBPs included in this study, an inverse correlation was observed between the values for log K(I) with 10b and the values for log(k(cat)/K(m)) for activity against the analogous substrate, and K(m)/K(I) ratios were 90, 1900, and 9600 for NG PBP 4, EC PBP 5, and NG PBP 3, respectively. These results demonstrate that peptide boronic acids can be effective transition state analogue inhibitors for the PBPs and provide a basis for the use of these agents as probes of PBP structure, function, and mechanism, as well as a possible basis for the development of new PBP-targeted antibacterial agents.  相似文献   

12.
Cytidine deaminase (CDA) binds the inhibitor zebularine as its 3,4-hydrate (K(d) ~ 10(-12) M), capturing all but ~5.6 kcal/mol of the free energy of binding expected of an ideal transition state analogue (K(tx) ~ 10(-16) M). On the basis of its entropic origin, that shortfall was tentatively ascribed to the trapping of a water molecule in the enzyme-inhibitor complex, as had been observed earlier for product uridine [Snider, M. J., and Wolfenden, R. (2001) Biochemistry 40, 11364-11371]. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) of CDA nebularized in the presence of saturating 5-fluorozebularine reveals peaks corresponding to the masses of E(2)Zn(2)W(2) (dimeric Zn-CDA with two water molecules), E(2)Zn(2)W(2)Fz, and E(2)Zn(2)W(2)Fz(2), where Fz represents the 3,4-hydrate of 5-fluorozebularine. In the absence of an inhibitor, E(2)Zn(2) is the only dimeric species detected, with no additional water molecules. Experiments conducted in H(2)(18)O indicate that the added mass W represents a trapped water molecule rather than an isobaric ammonium ion. This appears to represent the first identification of an enzyme-bound water molecule at a subunit interface (active site) using FTICR-MS. The presence of a 5-fluoro group appears to retard the decomposition of the inhibitory complex kinetically in the vapor phase, as no additional dimeric complexes (other than E(2)Zn(2)) are observed when zebularine is used in place of 5-fluorozebularine. Substrate competition assays show that in solution zebularine is released from CDA (k(off) > 0.14 s(-1)) much more rapidly than is 5-fluorozebularine (k(off) = 0.014 s(-1)), despite the greater thermodynamic stability of the zebularine complex.  相似文献   

13.
Snider MJ  Wolfenden R 《Biochemistry》2001,40(38):11364-11371
Kinetic measurements have shown that substantial enthalpy changes accompany substrate binding by cytidine deaminase, increasing markedly as the reaction proceeds from the ground state (1/K(m), DeltaH = -13 kcal/mol) to the transition state (1/K(tx), DeltaH = -20 kcal/mol) [Snider, M. J., et al. (2000) Biochemistry 39, 9746-9753]. In the present work, we determined the thermodynamic changes associated with the equilibrium binding of inhibitors by cytidine deaminase by isothermal titration calorimetry and van't Hoff analysis of the temperature dependence of their inhibition constants. The results indicate that the binding of the transition state analogue 3,4-dihydrouridine DeltaH = -21 kcal/mol), like that of the transition state itself (DeltaH = -20 kcal/mol), is associated with a large favorable change in enthalpy. The significantly smaller enthalpy change that accompanies the binding of 3,4-dihydrozebularine (DeltaH = -10 kcal/mol), an analogue of 3,4-dihydrouridine in which a hydrogen atom replaces this inhibitor's 4-OH group, is consistent with the view that polar interactions with the substrate at the site of its chemical transformation play a critical role in reducing the enthalpy of activation for substrate hydrolysis. The entropic shortcomings of 3,4-dihydrouridine, in capturing all of the free energy involved in binding the actual transition state, may arise from its inability to displace a water molecule that occupies the binding site normally occupied by product ammonia.  相似文献   

14.
A trigalacturonic acid analogue carrying a cyclohexene framework in place of the central pyranose ring was synthesized as a molecular probe for the mechanistic investigation of endo-polygalacturonase 1 (endo-PG 1). Preliminary enzymatic studies revealed that this analogue inhibited endo-PG 1 activity by about 30% at 0.3 mM concentration.  相似文献   

15.
The fosfomycin resistance protein, FosX, catalyzes the hydration of the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid. Genes encoding the enzyme are found in several pathogenic microorganisms. The structure and mechanism of action of the genomically encoded FosX enzyme from Listeria monocytogenes (FosXLMATCC) obtained from the American Type Culture Collection are reported. The gene harbors 31 point mutations, and as a consequence, the protein differs in 10 amino acid residues from the previously reported FosX encoded in the genome of the EGD strain of L. monocytogenes (FosXLMEGD). The FosXLMATCC enzyme is shown to catalyze the addition of water to the C1 position of the antibiotic with inversion of configuration at C1. The reaction involves Mn(II) activation of the oxirane oxygen and E44 acting as a general base. The structure of the enzyme has been determined from six different crystal forms of the protein. The structures of the enzyme without metal bound are similar but differ in the loop regions. Perhaps the most informative structure is the one with the product bound. This structure shows that the phosphonate group of the product is bound in an orientation that is different than that of fosfomycin bound to the related enzyme, FosA. The implication is that the substrate may also be bound in a different orientation in FosX. A high-resolution structure (1.44 A resolution) of the enzyme reveals a unique conformation in which the C-terminal tail of the protein coordinates to the Mn(II) center via the carboxylate of E126. The kinetic characterization of the E126Q mutant indicates that this conformation of the protein is probably not relevant to the function of the enzyme. Kinetic analysis of mutants of active site residue E44 is consistent with its proposed roll as a general base catalyst in the addition of water to the antibiotic.  相似文献   

16.
17.
Tn292l, a transposon encoding fosfomycin resistance.   总被引:7,自引:1,他引:6       下载免费PDF全文
The determinant of resistance to fosfomycin of the Serratia marcescens plasmid pOU900 was transposed into the plasmid ColE1 and into the plasmid RP4 in the absence of the RecA function of the host. In each case, the acquisition of fosfomycin resistance was correlated with the presence of a discrete piece of DNA, uniform in size and in restriction pattern, This new, 7.5-megadalton transposable element encoding resistance to fosfomycin has been called Tn2921. A preliminary map of the transposon is presented.  相似文献   

18.
19.
Nucleoside N-ribohydrolases from protozoan parasites are targets for inhibitor design in these purine-auxotrophic organisms. Purine-specific and purine/pyrimidine-nonspecific nucleoside hydrolases have been reported. Iminoribitols that are 1-substituted with meta- and para-derivatized phenyl groups [(1S)-substituted 1, 4-dideoxy-1,4-imino-D-ribitols] are powerful inhibitors for the nonspecific nucleoside N-ribohydrolases, but are weak inhibitiors for purine-specific isozymes [Parkin, D. W., Limberg, G., Tyler, P. C., Furneaux, R. H., Chen, X.-Y., and Schramm, V. L. (1997) Biochemisty 36, 3528-3534]. Binding of these inhibitors to nonspecific nucleoside hydrolase occurs primarily via interaction with the iminoribitol, a ribooxocarbenium ion analogue of the transition state. Weaker interactions arise from hydrophobic interactions between the phenyl group and the purine/pyrimidine site. In contrast, the purine-specific enzymes obtain equal catalytic potential from leaving group activation and ribooxocarbenium ion formation. Knowledge of the reaction mechanisms and transition states for these enzymes has guided the design of isozyme-specific transition state analogue inhibitors. New synthetic efforts have produced novel inhibitors that incorporate features of the leaving group hydrogen-bonding sites while retaining the iminoribitol group. These compounds provide the first transition state analogue inhibitors for purine-specific nucleoside hydrolase. The most inhibitory 1-substituted iminoribitol heterocycle is a sub-nanomolar inhibitor for the purine-specific nucleoside hydrolase from Trypanosoma brucei brucei. Novel nanomolar inhibitors are also described for the nonspecific nucleoside hydrolase from Crithidia fasciculata. The compounds reported here are the most powerful iminoribitol inhibitors yet described for the nucleoside hydrolases.  相似文献   

20.
Phosphoenolpyruvate synthetase of Escherichia coli is strongly inhibited by oxalate. The magnitude of the inhibition constant for oxalate suggests that this compound acts to produce a transition state analogue, in keeping with the suggestion of others that oxalate mimics the structure of enolpyruvate, a presumed catalytic intermediate in the enzymatic reaction. The addition of oxalate together with ATP results in a dramatic shielding of sensitive amino acid residues from reaction with both N-ethyl maleimide and phenylglyoxal. Thus, under conditions otherwise giving rise to almost complete inactivation by either reagent, no loss of activity is detectable in the presence of oxalate and ATP. These results indicate the formation of an enclosed structure during catalysis in which reactive groups are rendered quite inaccessible to solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号