首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sizes of endonuclease digestion fragments of DNA from cyanobacteria in symbiotic association with Azolla caroliniana or Anthoceros punctatus, or in free-living culture, were compared by Southern hybridization using cloned nitrogenase (nif) genes from Anabaena sp. PCC 7120 as probes. The restriction fragment pattern produced by cyanobacteria isolated from A. caroliniana by culture through symbiotic association with Anthoceros differed from that of the major symbiotic cyanobacterium freshly separated from A. caroliniana. The results indicate that minor cyanobacterial symbionts occur in association with Azolla and that the dominant symbiont was not cultured in the free-living state. Both the absence of hybridization to an xisA gene probe and the mapping of restriction fragments indicated a contiguous nifHDK organization in all cells of the symbiont in association with Azolla. On the other hand, in the cultured isolate from Azolla and in Nostoc sp. 7801, the nifD and nifK genes are nominally separated by an interval of unknown length, compatible with the interruption of the nifHDK operon by a DNA element as observed in Anabaena sp. PCC 7120. In the above cultured strains, restriction fragments consistent with a contiguous nifHDK operon were also present at varying hybridization intensities, especially in Nostoc sp. 7801 grown in association with Anthoceros, presumably due to gene rearrangement in a fraction of the cells.Non-standard abbreviations bp base pairs - kb kilobase pairs - kd kilodaltons  相似文献   

2.
A characteristic of N2-fixing cyanobacteria in symbiotic associations appears to be release of N2-derived NH4+. The specific activity of the primary ammonium-assimilating enzyme, glutamine synthetase (GS), was found to be three- to fourfold lower in Nostoc sp. strain 7801 grown in symbiotic association with the bryophyte Anthoceros punctatus than in free-living Nostoc sp. strain 7801. Quantitative immunological assays with antisera against GS purified from Nostoc sp. strain 7801 and from Escherichia coli indicated that similar amounts of the GS protein were present in symbiotic (50 micrograms mg-1) and free-living (68 micrograms mg-1) cultures. The conclusion from these experiments is that GS is regulated by a posttranslational mechanism in Anthoceros-associated Nostoc sp. strain 7801. However, the results of comparative catalytic and immunological experiments between N2- and NH4+-grown free-living Nostoc sp. strain 7801 implied control of GS synthesis. A correlation was not observed between the level of GS expression and the extent of symbiotic heterocyst differentiation in Nostoc sp. strain 7801 associated with A. punctatus.  相似文献   

3.
A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.  相似文献   

4.
The initial product of fixation of [13N]N2 by pure cultures of the reconstituted symbiotic association between Anthoceros punctatus L. and Nostoc sp. strain ac 7801 was ammonium; it accounted for 75% of the total radioactivity recovered in methanolic extracts after 0.5 min and 14% after 10 min of incubation. Glutamine and glutamate were the primary organic products synthesized from [13N]N2 after incubation times of 0.5–10 min. The kinetics of labeling of these two amino acids were characteristic of a precursor (glutamine) and product (glutamate) relationship. Results of inhibition experiments with methionine sulfoximine (MSX) and diazo-oxonorleucine were also consistent with the assimilation of N2-derived NH 4 + by Anthoceros-Nostoc through the sequential activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1), with little or no assimilation by glutamate dehydrogenase (EC 1.3.1.3). Isolated symbiotic Nostoc assimilated exogenous 13NH 4 + into glutamine and glutamate and their formation was inhibited by MSX, indicating operation of the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway: However, relative to free-living cultures, isolated symbiotic Nostoc assimilated 80% less exogenous ammonium into glutamine and glutamate, implying that symbiotic Nostoc could assimilate only a fraction of N2-derived NH 4 + . This implication was tested by using Anthoceros associations reconstituted with wild-type or MSX-resistant strains of Nostoc incubated with [13N]N2 in the presence of MSX. The results of these experiments indicated that, in situ, symbiotic Nostoc assimilated about 10% of the N2-derived NH 4 + and that NH 4 + was made available to Anthoceros tissue where it was apparently assimilated by the GS-GOGAT pathway. Since less than 1% of the fixed N2 was lost to the suspension medium, it appears that transfer of NH 4 + from symbiont to host tissue was very efficient in this extracellular symbiotic association.Abbreviations DON 6-diazo-5-oxo-l-norleucine - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSX l-methionine-dl-sulfoximine  相似文献   

5.
Nostocacean cyanobacteria typically produce gliding filaments termed hormogonia at a low frequency as part of their life cycle. We report here that all Nostoc spp. competent in establishing a symbiotic association with the hornwort Anthoceros punctatus formed hormogonial filaments at a high frequency in the presence of A. punctatus. The hormogonia-inducing activity was produced by A. punctatus under nitrogen-limited culture conditions. The hormogonia of the symbiotically competent Nostoc spp. were characterized as motile (gliding) filaments lacking heterocysts and with distinctly smaller cells than those of vegetative filaments; the small cells resulted from a continuation of cell division uncoupled from biomass increase. An essentially complete conversion of vegetative filaments to hormogonia occurred within 12 h of exposure of Nostoc sp. strain 7801 to A. punctatus growth-conditioned medium. Hormogonia formation was accompanied by loss of nitrogen fixation (acetylene reduction) and by decreases in photosynthetic CO2 fixation and in vivo NH4+ assimilation of 30% and approximately 40%, respectively. The rates of acetylene reduction and CO2 fixation returned to approximately the control rates within 72 to 96 h after hormogonia induction, as the cultures of Nostoc sp. strain 7801 differentiated heterocysts and reverted to the vegetative growth state. The relationship between hormogonia formation and symbiotic competence is discussed.  相似文献   

6.
Colonies of sixty-five filamentous cyanobacteria were screened for the production of temperate phages and/or antibiotics on solid medium. None of them was observed to release phages. However, seven N2-fixing strains were found to produce antibiotics very active against other cyanobacteria. The antibiotic produced by Nostoc sp. 78-11 A-E represents a bacteriocin of low molecular weight. Nostoc sp. ATCC 29132 appears to secrete, together with an antibiotic, a protein that inhibits its action.  相似文献   

7.
Summary N2-fixing cyanobacteria occur in symbiotic associations with fungi (ascomycetes) as lichens and with a few green plants. The associated cyanobacterium is always a species ofNostoc orAnabaena. Only a small number of plant genera are involved but there is a remarkable range of host diversity. Associations occur with several bryophytes (e.g.Anthoceros, Blasia, Cavicularia), a pteridophyte (Azolla), cycads (nine genera includingMacrozamia andEncephalartos) and an angiosperm (Gunnera). Except forGunnera, where the cyanobacterium penetrates the plant cells, the cyanobacteria are extracellular with specialized morphological modifications and/or structures of the host plant organs providing an environment which facilitates interaction with the prokaryote.Salient aspects of current knowledge pertaining to the establishment, perpetuation, and functioning of the individual symbioses are summarized. Where possible this includes information concerning recognition and specificity, mode(s) of infection, morphological modifications/adaptations of the host plant and a synopsis of morphological, physiological and biochemical changes common to the symbiotic cyanobacteria. The latter encompasses heterocyst frequencies, enzymes involved in ammonia assimilation, photosynthetic capability and metabolic interaction with the host.TheAzolla-Anabaena symbioses, which have potential agronomic significance as an alternative nitrogen source and maintain continuity with the endophyte through the sexual cycle, are emphasized.  相似文献   

8.
Element analysis using electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) was performed in a symbiotic Nostoc sp. strain found in the upper stem tissue of Gunnera manicata, and in Nostoc PCC 9229, a free-living heterocyst-forming cyanobacterium able to enter into symbiosis with the angiosperm Gunnera in reconstitution experiments. ESI and EELS unequivocally identified the four elements nitrogen (N), sulphur (S), phosphorus (P) and oxygen (O) in different inclusion bodies of these biological specimens. High amounts of nitrogen were solely detected in huge cyanophycin granules in vegetative cells of the symbiotic Nostoc strain, whereas large polyphosphate bodies, containing high amounts of phosphorus, sulphur and oxygen, could be seen in the free-living Nostoc PCC 9229. The latter were usually not present or, when found, very small in vegetative cells of the cyanobiont.  相似文献   

9.
The cyanobacterium Nostoc sp. strain UCD 7801, immediately after separation from pure cultures of a reconstituted symbiotic association with the bryophyte Anthoceros punctatus, exhibited a rate of light-dependent CO2 fixation that was eightfold lower than that measured in the free-living growth state. Ribulose bisphosphate carboxylase/oxygenase (RuBPC/O) specific activity was also eightfold lower in cell extracts of symbiotic strain 7801 relative to that in free-living cultures. The in vitro activity from symbiotic strain 7801 could not be increased by incubation under the standard RuBPC/O activation conditions. Polyclonal antibodies against the RuBPC/O large subunit were used in an enzyme-linked immunosorbent assay to determine that RuBPC/O accounted for 4.3 and 5.2% of the total protein in cell extracts of strain 7801 grown in symbiotic and free-living states, respectively. The results imply that the regulation of RuBPC/O activity in the symbiotic growth state is by a posttranslational mechanism rather than by an alteration in RuBPC/O protein synthesis. The amount of carboxyarabinitol bisphosphate required to irreversibly inhibit RuBPC/O activity of sybiotic cell extracts was 80% of that required for extracts of free-living cultures. This result indicates that any covalent modification of RuBPC/O in symbiotically associated Nostoc cells did not interfere with the ribulose bisphosphate binding site, since inactive enzyme also bound carboxyarabinitol bisphosphate.  相似文献   

10.
Two capsulated, exopolysaccharide-producing cyanobacteria, Cyanospira capsulata and Nostoc PCC7936, were tested with regard to their metal removal capability by using copper as model metal. The experiments, carried out with the sole cyanobacterial biomass suspended in distilled water and confined into small dialysis tubings, showed that C. capsulata biomass is characterized by the best efficiency in metal removal, with a qmax (maximum amount of copper removed per biomass unit) of 96 ± 2 mg Cu(II) removed per g of protein in comparison with the value of 79 ± 3 of Nostoc PCC7936 biomass. The experimental data obtained with both cyanobacterial biomass best fit the Langmuir sorption isotherm. The sorption of copper started from the first minutes of contact with the metal and attained the equilibrium state, when no more copper removal was evident, after 5 and 6 hours, for C. capsulata and Nostoc PCC7936, respectively. The best efficiency in Cu(II) removal was obtained at pH 6.1–6.2, while the presence of Mg2+ or Ca2+ reduced copper removal capability of both species to 60–70% of their qmax. The results showed that the biomass of C. capsulata and Nostoc PCC7936 possesses a high affinity and a high specific uptake for copper, comparable with the best performances shown by other microbial biomass, and suggest the possibility to use the capsulated trichomes of the two cyanobacteria for the bioremoval of heavy metals from polluted water bodies.  相似文献   

11.
DNA was prepared from cyanobacteria freshly isolated from coralloid roots of natural populations of five cycad species: Ceratozamia mexicana mexicana (Mexico), C. mexicana robusta (Mexico), Dioon spinulosum (Mexico), Zamia furfuraceae (Mexico) and Z. skinneri (Costa Rica). Using the Southern blot technique and cloned Anabaena PCC 7120 nifK and glnA genes as probes, restriction fragment length polymorphisms of these cyanobacterial symbionts were compared. The five cyanobacterial preparations showed differences in the sizes of their DNA fragments hybridizing with both probes, indicating that different cyanobacterial species and/or strains were in the symbiotic associations. On the other hand, a similar comparison of cyanobacteria freshly collected from a single Encephalartos altensteinii coralloid root and from three independently subcultured isolates from the same coralloid root revealed that these were likely to be one and the same organism. Moreover, the complexity of restriction patterns shows that a mixture of Nostoc strains can associate with a single cycad species although a single cyanobacterial strain can predominate in the root of a single cycad plant. Thus, a wide range of Nostoc strains appear to associate with the coralloid roots of cycads.Non-standard abbreviations bp base pairs - kbp kilobase pairs - RFLP's restriction fragment length polymorphisms  相似文献   

12.
The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.Abbreviations CP carbamoyl phosphate - EDTA ethylenedi-amine tetraacetic acid - PEP phosphoenolpyruvate - RuBP ribulose 1,5 bisphosphate  相似文献   

13.
Summary After random Tn5 mutagenesis of the stem-nodulating Sesbania rostrata symbiont strain ORS571, Nif-, Fix- and Nod- mutants were isolated. The Nif- mutants had lost both free-living and symbiotic N2 fixation capacity. The Fix- mutants normally fixed N2 in the free-living state but induced ineffective nodules on S. rostrata. They were defective in functions exclusively required for symbiotic N2 fixation. A further analysis of the Nod- mutants allowed the identification of two nod loci. A Tn5 insertion in nod locus 1 completely abolished both root and stem nodulation capacity. Root hair curling, which is an initial event in S. rostrata root nodulation, was no longer observed. A 400 bp region showing weak homology to the nodC gene of Rhizobium meliloti was located 1.5 kb away from this nod Tn5 insertion. A Tn5 insertion in nod locus 2 caused the loss of stem and root nodulation capacity but root hair curling still occurred. The physical maps of a 20.5 kb DNA region of nod locus 1 and of a 40 kb DNA region of nod locus 2 showed no overlaps. The two nod loci are not closely linked to nif locus 1, containing the structural genes for the nitrogenase complex (Elmerich et al. 1982).  相似文献   

14.
Genetic similarity among cyanobacteria of a morphological subgroup ofNostoc was evaluated through a comparison of several specific genes and the extent of DNA methylation. Four of six cyanobacteria were originally cultured from facultative symbioses with higher plants (Gunnera andEncephalartos); these and one free-living isolate had been identified or reputed to beN. punctiforme. No consistent correlation to species or symbiotic history was found from DNA hybridizations to genes coding for phycocyanin (cpcAB), allophycocyanin (apcAB), gas vesicle protein (gvpA1), and dinitrogenase reductase (nifH). One gene (gvpC) was not present, andgvpA1 was a single-copy gene in all strains. The gas vesicle genes were concluded to be potentially useful for broadly characterizingNostoc or at least this subgroup. Incubations ofNostoc genomic DNA with 22 restriction endonucleases indicated a high degree of methylation and similarity of its methylated DNA to that of other heterocystous cyanobacteria. The genetic variation of theNostoc isolates was judged to reflect primarily different soil origins.  相似文献   

15.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   

16.
The selectivity of mycobionts and cyanobionts in lichen symbioses were examined. We analyzed symbiotic cyanobionts, collected from different sample sites, and compared them to free‐living cyanobacteria Nostoc. Cyanobionts were obtained from lichens assigned to the genera Pseudocyphellaria and Sticta, in particular. Multiple gene loci were screened and direct optimization was used in the phylogenetic analyses. We show that many lichen fungi are strongly selective towards their cyanobionts. Lichenized ascomycetes seem to be able to identify and choose a specific strain, species or a species group of Nostoc with which to associate. The present analyses also suggest that some of the Nostoc taxa may be specialized in symbiotic life with only lichenized ascomycetes. Despite the selectivity observed in fungi, there appears to be no coevolution between the partners. We have also discussed the problems of using the tRNALeu intron as a marker in phylogenetic analyses. © The Willi Hennig Society 2006.  相似文献   

17.
The free-living cyanobacterium Anabaena variabilis showed a biphasic pattern of 14CH3NH 3 + uptake. Initial accumulation (up to 60 s) was independent of CH3NH 3 + metabolism, but long-term uptake was dependent on its metabolism via glutamine synthetase (GS). The CH3NH 3 + was converted into methylglutamine which was not further metabolised. The addition of l-methionine-dl-sulphoximine (MSX), to inhibit GS, inhibited CH3NH 3 + metabolism, but did not affect the CH3NH 3 + transport system.NH 4 + , when added after the addition of 14CH3NH 3 + , caused the efflux of free CH3NH 3 + ; when added before 14CH3NH 3 + , NH 4 + inhibited its uptake indicating that both NH 4 + and CH3NH 3 + share a common transport system. Carbonylcyanide m-chlorophenylhydrazone and triphenyl-methylphosphonium both inhibited CH3NH 3 + accumulation indicating that the transport system was -dependent. At pH 7 and at an external CH3NH 3 + concentration of 30 mol dm-3, A. variabilis showed a 40-fold intracellular accumulation of CH3NH 3 + (internal concentration 1.4 mmol dm-3). Packets of the symbiotic cyanobacterium Anabaena azollae, directly isolated from the water fern Azolla caroliniana, also showed a -dependent NH 4 + transport system suggesting that the reduced inhibitory effect of NH 4 + on nitrogenase cannot be attributed to the absence of an NH 4 + transport system but is probably related to the reduced GS activity of the cyanobiont.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - membrane potential - pH transmembrane pH difference - TPMP+ triphenylmethylphosphonium  相似文献   

18.
Anabaena azollae, a presumptive isolate from Azolla filiculoides, was immobilized in polyurethane foam, hydrophilic polyvinyl foam and alginate. When viewed by low-temperature scanning electron microscopy a thick mucilage layer covered the surface of both cells and matrix; this closely resembles the mode of attachment of the symbiont Anabaena in the Azolla leaf cavity. The heterocyst frequency of the immobilized A. azollae doubled relative to free-living cells and reached a level of 14–17%. Immobilization induced increases in both hydrogen production via nitrogenase or hydrogenase and in the rates and stabilization of acetylene reduction (N2-fixation). Ammonia production by immobilized cells with L-methionine-D,L-sulfoximine (MSX) is greater than that of freeliving cells. Immobilized cells without MSX were, however, able to excrete ammonium at lower rates thus emulating the characteristic of the symbiotic cyanobacteria (A. azollae) in the leaf cavity of Azolla.Abbreviations Chl chlorophyll - GS glutamine synthetase - MSX L-methionine-D,L-sulfoximine - SEM scanning electron microscopy - PU polyurethane - PV polyvinyl  相似文献   

19.
The phycobiliprotein phycoerythrin was localized in symbiotic and free-living Nostoc of the cycad Cycas using immunocytochemistry. In symbiotic Nostoc, phycoerythrin was associated with the thylakoid membranes of vegetative cells and absent from heterocysts. Similar cellular/subcellular localization was observed between symbiotic Nostoc and the free-living Cycas isolate Nostoc 7422.  相似文献   

20.
Fluorescent Pseudomonas sp. strain 267 promotes growth of nodulated clover plants under gnotobiotic conditions. In the growth conditions (60 M FeCl3), the production of siderophores of the pseudobactin-pyoverdin group was repressed. Plant growth enhancement results from secretion of B vitamins by Pseudomonas sp. strain 267. This was proven by stimulation of clover growth by naturally auxotrophic strains of Rhizobium leguminosarum bv. trifolii and marker strains E. coli thi- and R. meliloti pan- in the presence of the supernatant of Pseudomonas sp. strain 267. The addition of vitamins to the plant medium increased symbiotic nitrogen fixation by the clover plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号