首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This is the first detailed report about the collar enamel of the teeth of Polypterus senegalus. We have examined the fine structure of the collar enamel and enamel organ of Polypterus during amelogenesis by light and transmission electron microscopy. An immunohistochemical analysis with an antibody against bovine amelogenin, an antiserum against porcine amelogenin and region-specific antibodies or antiserum against the C-terminus, middle region and N-terminus of porcine amelogenin has also been performed to examine the collar enamel matrix present in these teeth. Their ameloblasts contain fully developed Golgi apparatus, rough endoplasmic reticulum and secretory granules. During collar enamel formation, an amorphous fine enamel matrix containing no collagen fibrils is found between the dentin and ameloblast layers. In non-demineralized sections, the collar enamel (500 nm to 1 μm thick) is distinguishable from dentin, because of its higher density and differences in the arrangement of its crystals. The fine structural features of collar enamel in Polypterus are similar to those of tooth enamel in Lepisosteus (gars), coelacanths, lungfish and amphibians. The enamel matrix shows intense immunoreactivity to the antibody and antiserum against mammalian amelogenins and to the middle-region- and C-terminal-specific anti-amelogenin antibodies. These findings suggest that the proteins in the enamel of Polypterus contain domains that closely resemble those of bovine and porcine amelogenins. The enamel matrix, which exhibits positive immunoreactivity to mammalian amelogenins, extends to the cap enameloid surface, implying that amelogenin-like proteins are secreted by ameloblasts as a thin matrix layer that covers the cap enameloid after enameloid maturation.  相似文献   

2.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

3.
4.
5.
Mouse secretory ameloblasts express a number of enamel proteins, which have been divided into amelogenin and enamelin subfamilies. We have used polyclonal antibodies to murine amelogenins to reveal enamel proteins in mouse ameloblasts using the protein A-gold immunocytochemical technique. Specific immunolabeling was detected over the extracellular enamel matrix and over the rough endoplasmic reticulum, the saccules of the Golgi apparatus, and the secretory granules of the ameloblasts. In addition, some lysosome-like granules were also labeled. Only background labeling was obtained over mitochondria, nuclei, cytosol, adjacent odontoblasts, and dentin. Quantitation of the intensity of labeling showed the presence of an increasing gradient along the secretory pathway, which may correspond to the concentration or the maturation of these proteins as they are processed by the cell. These findings indicate that the ameloblast displays an intracellular distribution of its secretory products similar to that of other merocrine secreting cells. The presence of enamel proteins in lysosomes suggests that crinophagy and/or resorption occurs in these cells.  相似文献   

6.
We have determined the distribution of amelogenin polypeptides in an order of elasmobranchs using indirect immunofluorescence with rabbit polyclonal antibodies prepared to purified murine amelogenins. We find that amelogenins are definitely present within the inner enamel epithelium prior to the production of the extracellular matrix component termed "enameloid" (row II developing tooth organs). During subsequent stages of selachian tooth development (row III tooth organs), immunofluorescence staining data indicated localization of amelogenin antigens within epithelium as well as the enameloid extracellular matrix. The results from these immunohistochemical studies suggest that the 16-20 kdalton amelogenins, which are characteristic of murine inner enamel epithelial cells undergoing terminal biochemical differentiation into secretory ameloblasts, may also be regarded as molecular markers for amelogenesis in developing teeth in the spiny dogfish, Squalus acanthias.  相似文献   

7.
To create a bioceramic with unique materials properties, biomineralization exploits cells to create a tissue-specific protein matrix to control the crystal habit, timing, and position of the mineral phase. The biomineralized covering of vertebrate teeth is enamel, a distinctive tissue of ectodermal origin that is collagen-free. In forming enamel, amelogenin is the abundant protein that undergoes self-assembly to contribute to a matrix that guides its own replacement by mineral. Conserved domains in amelogenin suggest their importance to biomineralization. We used gene targeting in mice to replace native amelogenin with one of two engineered amelogenins. Replacement changed enamel organization by altering protein-to-crystallite interactions and crystallite stacking while diminishing the ability of the ameloblast to interact with the matrix. These data demonstrate that ameloblasts must continuously interact with the developing matrix to provide amelogenin-specific protein to protein, protein to mineral, and protein to membrane interactions critical to biomineralization and enamel architecture while suggesting that mutations within conserved amelogenin domains could account for enamel variations preserved in the fossil record.  相似文献   

8.
Summary Enamel proteins were extracted from the newly formed layer of immature porcine enamel, and the 25 kDa amelogenin, 89 kDa enamelin and 13–17 kDa nonamelogenins were purified. Specific antisera were raised against these proteins. Antibodies specific to the C-terminal region (residues 149–173) of the 25 kDa amelogenin were generated by absorption of the anti-25 kDa amelogenin serum with 20 kDa amelogenin, which contains residues 1–148 of the antigen. Immunoelectrotransfer blotting of the extracted porcine enamel proteins showed that the anti-25 kDa amelogenin serum recognized the 25 kDa and other low and high molecular weight amelogenins. The C-terminal specific anti-25 kDa amelogenin serum reacted only with amelogenins having molecular weights over 23 kDa. The anti-89 kDa enamelin serum recognized the 89 kDa enamelin and lower molecular weight proteins, but neither the amelogenins nor the 13–17 kDa nonamelogenins. The antiserum against the 13–17 kDa nonamelogenins showed no cross reactivity to the 89 kDa enamelin, but recognized higher molecular weight nonamelogenins. In immunohistochemical preparations of the porcine tooth germs, the 25 kDa amelogenin-like immunoreactivity over immature enamel decreased in a gradient from the enamel surface to the middle layer. In the inner layer immunoreactivity was concentrated over the prism sheaths. The C-terminal specific 25 kDa amelogenin-like immunoreactivity was intense at the outer layer of immature enamel and decreased sharply toward the middle layer. Prism sheaths were intensely stained by the antiserum to the 13–17 kDa nonamelogenins. The 89 kDa enamelin-like immunoreactivity over enamel prisms was intense at the outer layer and decreased toward the middle layer. Staining by the anti-89 kDa enamelin serum of prism sheaths was faint. In immature rat incisor enamel, the C-terminal specific 25 kDa amelogenin antiserum demonstrated a staining pattern similar to that in the immature enamel of the pig. Distinct 13–17 kDa nonamelogenin-like and 89 kDa enamelin-like immunoreactivities were found especially in the layer adjacent to the Tomes' process. We conclude that some enamel proteins are degraded soon after their secretion from the secretory ameloblast in the rat and the pig. The specific enamel proteins which reacted with the antiserum to the 13–17 kDa nonamelogenins seem to be involved with the formation of prism sheaths in immature porcine enamel, but not in rat incisor enamel.  相似文献   

9.
Enamel proteins were extracted from the newly formed layer of immature porcine enamel, and the 25 kDa amelogenin, 89 kDa enamelin and 13-17 kDa nonamelogenins were purified. Specific antisera were raised against these proteins. Antibodies specific to the C-terminal region (residues 149-173) of the 25 kDa amelogenin were generated by absorption of the anti-25 kDa amelogenin serum with 20 kDa amelogenin, which contains residues 1-148 of the antigen. Immunoelectro-transfer blotting of the extracted porcine enamel proteins showed that the anti-25 kDa amelogenin serum recognized the 25 kDa and other low and high molecular weight amelogenins. The C-terminal specific anti-25 kDa amelogenin serum reacted only with amelogenins having molecular weights over 23 kDa. The anti-89 kDa enamelin serum recognized the 89 kDa enamelin and lower molecular weight proteins, but neither the amelogenins nor the 13-17 kDa nonamelogenins. The antiserum against the 13-17 kDa nonamelogenins showed no cross reactivity to the 89 kDa enamelin, but recognized higher molecular weight nonamelogenins. In immunohistochemical preparations of the porcine tooth germs, the 25 kDa amelogenin-like immunoreactivity over immature enamel decreased in a gradient from the enamel surface to the middle layer. In the inner layer immunoreactivity was concentrated over the prism sheaths. The C-terminal specific 25 kDa amelogenin-like immunoreactivity was intense at the outer layer of immature enamel and decreased sharply toward the middle layer. Prism sheaths were intensely stained by the antiserum to the 13-17 kDa nonamelogenins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Amelogenins: assembly, processing and control of crystal morphology.   总被引:5,自引:0,他引:5  
The remarkable properties of enamel crystals and their arrangements in an extraordinary micro-architecture are clear indications that the processes of crystal nucleation and growth in the extracellular matrix are highly controlled. The major extracellular events involved in enamel formation are: (a) delineation of space by the secretory ameloblasts and the dentino-enamel junction; (b) self-assembly of amelogenin proteins to form the supramolecular structural framework; (c) transportation of calcium and phosphate ions by the ameloblasts resulting in a supersaturated solution; (d) nucleation of apatite crystallites; and (e) elongated growth of the crystallites. Finally, during the 'maturation' step, rapid growth and thickening of the crystallites take place, which is concomitant with progressive degradation and eventual removal of the enamel extracellular matrix components (mainly amelogenins). This latter stage during which physical hardening of enamel occurs is perhaps unique to dental enamel. We have focused our in vitro studies on three major extracellular events: matrix assembly, matrix processing and control of crystal growth. This paper summarizes current knowledge on the assembly, processing and effect on crystal morphology by amelogenin proteins. The correlation between these three events and putative functional roles for amelogenin protein are discussed.  相似文献   

11.
During enamel formation, the organic enamel protein matrix interacts with calcium phosphate minerals to form elongated, parallel, and bundled enamel apatite crystals of extraordinary hardness and biomechanical resilience. The enamel protein matrix consists of unique enamel proteins such as amelogenin, ameloblastin, and enamelin, which are secreted by highly specialized cells called ameloblasts. The ameloblasts also facilitate calcium and phosphate ion transport toward the enamel layer. Within ameloblasts, enamel proteins are transported as a polygonal matrix with 5 nm subunits in secretory vesicles. Upon expulsion from the ameloblasts, the enamel protein matrix is re-organized into 20 nm subunit compartments. Enamel matrix subunit compartment assembly and expansion coincide with C-terminal cleavage by the MMP20 enamel protease and N-terminal amelogenin self-assembly. Upon enamel crystal precipitation, the enamel protein phase is reconfigured to surround the elongating enamel crystals and facilitate their elongation in C-axis direction. At this stage of development, and upon further amelogenin cleavage, central and polyproline-rich fragments of the amelogenin molecule associate with the growing mineral crystals through a process termed “shedding”, while hexagonal apatite crystals fuse in longitudinal direction. Enamel protein sheath-coated enamel “dahlite” crystals continue to elongate until a dense bundle of parallel apatite crystals is formed, while the enamel matrix is continuously degraded by proteolytic enzymes. Together, these insights portrait enamel mineral nucleation and growth as a complex and dynamic set of interactions between enamel proteins and mineral ions that facilitate regularly seeded apatite growth and parallel enamel crystal elongation.  相似文献   

12.
The developing enamel matrix contains mostly amelogenins, which are hydrophobic proline-rich proteins. During amelogenesis, the amelogenins are presumably hydrolysed and removed from the enamel. Recently a number of metalloproteinases that may be important in amelogenesis have been identified in zymograms of the developing enamel matrix. In the present study an antibody specific for the matrix metalloproteinase collagenase activator protein (CAP) was characterized and used to identify this metalloproteinase in enamel. Immunoblotting showed that the CAP proteinase was present in the enamel matrix. Immunohistochemistry confirmed that the proteinase is localized in the enamel matrix, most specifically along the dentino-enamel junction. Purified CAP was found to hydrolyse amelogenin protein. Possible functions of the proteinase in the enamel matrix are discussed.  相似文献   

13.
Summary The immunohistochemical localization of large hyaluronate-binding proteoglycans has been studied in human tooth germs at the bell stage using a monoclonal antibody, 5D5, which is derived from bovine sclera and specifically recognizes the core protein of large proteoglycans, such as versican, neurocan and brevican, but not that of aggrecan. In the early bell stage before predentine secretion, when the enamel organs consisted of the inner and outer enamel epithelia, stratum intermedium and stellate reticulum, the enamel organs were not stained by 5D5, but the dental papillae and follicles stained strongly. Concomitant with the secretion of predentine, dentine and subsequent enamel matrix, strong 5D5 immunostaining distributed over the entire cell surfaces of secretory ameloblasts was observed. The forming enamel matrix showed strong staining. While most of the inner and outer enamel epithelia and stratum intermedium lacked staining, the cervical loop region and stellate reticulum showed weak staining. Although the forming dentine and odontoblasts appeared to lack 5D5 affinity, the predentine, dental papilla and dental follicle demonstrated moderate to strong reactivity. At the ultrastructural level, specific immunoreaction by immunogold particle deposition was clearly detected over the basal lamina of presecretory ameloblasts, secretion granules of secretory ameloblasts and the forming enamel matrix. These results indicate that a marked increase in the large proteoglycan associated with secretory ameloblasts may correlate with cell differentiation and enamel matrix biosynthesis. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
The epithelially-derived ameloblasts secrete two main categories of extracellular matrix proteins, amelogenins (AMEL) and nonamelogenins. These proteins assume differential distributions in the forming enamel layer and thereby regulate deposition and structuring of the mineral phase. The objective of this study was to elucidate whether their distribution results from distinctive physicochemical behaviors or differences in intracellular routing. Dual-immunogold labeling was used to visualize the presence of AMEL and ameloblastin (AMBN), the major nonamelogenin, and quantify the proportion of secretory granules containing one or both of these proteins in ameloblasts during the phase of appositional growth of the enamel layer in continuously-erupting rat incisors. Some rats were treated with brefeldin A (BFA) to generate a synchronized cohort of newly-formed secretory granules. The results show that nearly 70% of granules contain both AMEL and AMBN, 13% label only for AMBN and 1% only for AMEL. These proportions reach 98% (AMEL+AMBN) and 2% (AMBN only) following BFA treatment. The observation that AMEL is almost always packaged with AMBN suggests a functional association between these two proteins. The subpopulation of granules containing only AMBN could be responsible for augmenting its local concentration along secretory surfaces against which hydroxyapatite crystals actively elongate.  相似文献   

15.
Tooth enamel biomineralization is mediated by enamel proteins synthesized by ameloblast cells. Two classes of proteins have been described: enamelins and amelogenins. In lower vertebrates the absence of amelogenins is believed to give rise to aprismatic enamel; however, rabbit teeth, which apparently do not synthesize amelogenins, form prismatic enamel. The present study was designed to characterize the enamel proteins present in rabbit tooth organs and to gain an insight into the process of biomineralization. Rabbit enamel extracellular-matrix proteins were isolated and characterized during sequential stages of rabbit tooth organogenesis. The biosynthesis of enamel proteins was analysed by metabolic 'pulse-chase' experiments as well as mRNA-translation studies in cell-free systems. Our results indicated that rabbit enamel extracellular matrix contains 'amelogenin-like' proteins. However, these proteins are not synthesized as typical amelogenins, as in other mammalian species, thus suggesting that they are the processing products of higher-molecular-mass precursors. An N-terminal amino acid sequence of 29 residues, considered characteristic of mammalian amelogenins, was present in the rabbit 'amelogenin-like' proteins. By using anti-peptide antibodies to this region, similar epitopes were detected in all nascent enamel proteins, including enamelins. These studies suggest that the N-terminal sequence might be characteristic of all enamel proteins, not only amelogenins.  相似文献   

16.
该研究旨在探讨外源性Runx2过表达对小鼠成釉细胞Runx2敲除导致的釉质缺陷的挽救作用。采用免疫组化验证Runx2在Runx2条件性敲除且人源性Runx2过表达小鼠成釉细胞中的表达。HE染色观察成熟期成釉细胞形态及釉质基质蛋白残余。用体视显微镜和扫描电镜观察小鼠牙齿表面形态和釉柱结构。结果显示,RUNX2蛋白在出生后10天龄Tg;cKO小鼠成熟早期成釉细胞中成功表达。15天龄Tg;cKO小鼠与cKO小鼠相比,成熟晚期成釉细胞形态及排列未见明显改善,但釉质基质蛋白残余量明显减少。3月龄Tg;cKO小鼠与cKO小鼠相比,釉质磨耗减轻,釉柱间孔隙减少,釉柱排列更规则。该研究结果表明,人源性Runx2过表达可部分挽救小鼠成釉细胞Runx2敲除导致的釉质缺陷。  相似文献   

17.
Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory-stage ameloblasts. Enamel protein-cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. KLK4 is secreted by transition- and maturation-stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins.  相似文献   

18.
During tooth formation nearly all of the protein matrix of enamel is removed before final mineralization. To study this process, enamel proteins and proteinases were extracted from pig enamel at different stages of tooth development. In the enamel maturation zones, the major enamel matrix proteins, the amelogenins, were rapidly processed and removed. Possibly associated with this process in vivo are two groups of proteinases which were identified in the enamel extracts by enzymography using amelogenin-substrate and gelatin-substrate polyacrylamide gels and by the degradation in vitro of guanidinium chloride-extracted amelogenins. One group of proteinases with gelatinolytic activity consisted of several neutral metalloendoproteinases having Mr values from 62,000 to 130,000. These proteinases were inactive against amelogenins, casein and albumin, and were present in approximately equal proportions in enamel at all developmental stages. In the other group, two serine proteinases, with apparent non-reduced Mr of 31,000 and 36,000 exhibited amelogeninolytic activity. The substrate preference of the enamel serine proteinases was indicated by their limited degradation of casein and their inability to degrade gelatin and albumin. Contrasting with the distribution of the metalloendoproteinase enzymes, the serine proteinases were found only in the enamel scrapings taken from late-maturing enamel. The amelogenin degradation patterns in vivo, observed in the enamel scrapings, were similar to those produced in assays in vitro using partially purified fractions of enamel proteinases and amelogenin substrate. Together, these data strongly indicate an important role for the serine proteinases, and possibly the gelatinolytic proteinases, in the organized processing of the enamel protein matrix during enamel formation.  相似文献   

19.
Biochemical and histochemical studies have shown the presence of various carbohydrates in enamel. Using lectin-gold cytochemistry, we have examined the distribution of glycoconjugates containing N-acetyl-D-galactosamine (GalNAc) and/or N-acetyl-glucosamine (GlcNAc)/N-acetyl-neuraminic acid (NeuNAc) residues in rat incisor ameloblasts and in forming and maturing enamel embedded in Lowicryl K4M, LR Gold, and LR White resins. The enamel proteins that contain these carbohydrate moieties were further characterized by lectin blotting. All three resins allowed, albeit to a variable degree, detection of the binding sites for Helix pomatia agglutinin (HPA) and wheat germ agglutinin (WGA) GalNAc, and GlcNAc/NeuNAc, respectively. In general, Lowicryl K4M permitted more intense reactions with both lectins. Lectin binding was observed over the rough endoplasmic reticulum (weak labeling with WGA), the Golgi apparatus, lysosomes, secretory granules, and the enamel matrix. These compartments were shown by double labeling with WGA and anti-amelogenin antibody, and by previous immunocytochemical studies, to contain enamel proteins. Furthermore, WGA binding was more concentrated at the growth sites of enamel. Lectin blotting showed that several proteins in the amelogenin group were glycosylated and contained the sugars GalNAc and GlcNAc/NeuNAc. Fewer proteins were stained by HPA than by WGA, and the staining pattern suggested that the extracellular proteins recognized by these two lectins are processed differently. The HPA-reactive proteins were lost by or during the early maturation stage, whereas many of the WGA-reactive proteins persisted into the mid maturation stage. The heterogeneous staining of certain protein bands observed with WGA suggests that they contain more than one component. Two distinct glycoproteins containing GlcNAc/NeuNAc also appeared during the maturation stage. These results are consistent with the notion that ameloblasts produce an extracellular matrix composed mainly of glycosylated amelogenins which are differently processed throughout amelogenesis.  相似文献   

20.
Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号