共查询到20条相似文献,搜索用时 8 毫秒
1.
Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein
involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure
to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells,
(3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation
of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress
is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells. 相似文献
2.
Among the factors that affect cell resistance against dehydration, oxidation is considered to be of great importance. In this work, we verified that both control and glutathione deficient mutant strains were much more oxidized after dehydration. Moreover, cells lacking glutathione showed a twofold higher increase in oxidation and lipid peroxidation than the control strain. While glucose 6-phosphate dehydrogenase and glutathione reductase activities did not change in response to dehydration in the control strain, the mutant strain gsh1 (glutathione deficient) showed a reduction of 50% in both activities, which could explain the high levels of oxidation shown by gsh1 cells. In conformity with these results, the mutant lacking GSH1 showed a high sensitivity to dehydration. Furthermore, the addition of glutathione to gsh1 cells restored survival rates to the levels of the control strain. We conclude that glutathione plays a significant role in the maintenance of intracellular redox balance during dehydration. 相似文献
3.
We have isolated several mutants ofSaccharomyces cerevisiae that are sensitive to oxidative stress in a screen for elevated sensitivity to hydrogen peroxide. Two of the sixteen complementation groups obtained correspond to structural genes encoding enzymes of the pentose phosphate pathway. Allelism of thepos10 mutation (POS forperoxidesensitivity) to thezwf1/met1 mutants in the structural gene for glucose 6-phosphate dehydrogenase was reported previously. The second mutation,pos18, was complemented by transformation with a yeast genomic library. The open reading frame of the isolated gene encodes 238 amino acids. No detectable ribulose 5-phosphate epimerase activity was found in thepos18 mutant, suggesting that the corresponding structural gene is affected in this mutant. For that reason the gene was renamedRPE1 (forribulose 5-phosphateepimerase).RPE1 was localized to chromosome X. The predicted protein has a molecular mass of 25 966 Daltons, a codon adaptation index (CAI) of 0.32, and an isoelectric point of 5.82. Database searches revealed 32 to 37% identity with ribulose 5-phosphate epimerases ofEscherichia coli, Rhodospirillum rubrum, Alcaligenes eutrophus andSolanum tuberosum. We have characterizedRPE1 by testing enzyme activities inrpe1 deletion mutants and in strains that overexpressRPE1, and compared the hydrogen peroxide sensitivity ofrpe1 mutants to that of other mutants in the pentose phosphate pathway. Interestingly, all mutants tested (glucose 6-phosphate dehydrogenase, gluconate 6-phosphate dehydrogenase, ribulose 5-phosphate epimerase, transketolase, transaldolase) are sensitive to hydrogen peroxide. 相似文献
4.
Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast 总被引:6,自引:0,他引:6
Protracted starvation of auxotrophic Saccharomyces cerevisiae strains for an essential amino acid is commonly used to allow investigation of adaptive mutation mechanisms during starvation-induced cell cycle arrest. Under these conditions, the majority of cells dies during the first 6 days. We investigated starving cells for markers of programmed cell death and for the production of reactive oxygen species (ROS). We observed that protracted starvation for lysine or histidine resulted in an increasing number of cells exhibiting DNA fragmentation and chromatin condensation, thus an apoptotic phenotype. Not only respiration-competent cells but also respiratory deficient rho0 cells were able to undergo programmed cell death. In addition the starving cells rapidly exhibited indicators of oxidative stress, independently of their respiratory competence. These results indicate that starvation for an essential amino acid results in severe cell stress, which may finally be the trigger of programmed cell death. 相似文献
5.
R.G.S. Bruno H.M. Rutigliano R.L. Cerri P.H. Robinson J.E.P. Santos 《Animal Feed Science and Technology》2009,150(3-4):175-186
Effects of feeding a culture of Saccharomyces cerevisiae to lactating cows on their lactational performance during heat stress were determined. Multiparous Holstein cows (n = 723) calving during the summer months from two dairy farms were randomly assigned to a diet containing no yeast culture (control; n = 361) or 30 g/d of a S. cerevisiae yeast culture (YC; n = 362) fed from 20 to 140 d in milk (DIM). Cows were milked twice daily and the production of milk and milk components was measured every 2 weeks. Dry matter (DM) intakes from 6 pens were measured daily and pen temperature and humidity were evaluated hourly from June to November. Rectal temperature was measured in 88 cows (22/treatment/farm), once weekly, and blood was sampled from a subset of 120 cows at 58 and 100 DIM for measurements of plasma glucose, nonesterified fatty acids, 3-OH-butyrate, insulin, and urea N concentrations. Daily temperature, humidity and the temperature-humidity index in the study pens did not differ between treatments, and rectal temperature of cows in the control and YC treatments differed with days postpartum. Intake of DM was similar between diets, but cows fed YC produced 1.2 kg/d more milk, more milk true protein, solids-not-fat and lactose than that produced by control cows. However, energy-corrected milk yield, and concentrations of true protein, solids-not-fat and lactose did not differ between treatments. Feeding YC did not influence plasma metabolites, insulin, or body condition score of cows, but urea N concentrations were reduced. Feeding a yeast culture of S. cerevisiae improved yields of milk and milk components in heat-stressed multiparous Holstein cows. 相似文献
6.
7.
Koei Hamana Kazuei Mita Sachiko Ichimura Mitsuo Zama Keisuke Kaji Nobuo Niimura 《FEBS letters》1983,160(1-2)
We have succeeded in growing Saccharomyces cerevisiae (baker's yeast) on media containing 2H2O and isolating the core histones highly deuterated in the non-exchangeable positions. The deuterated histones obtained here are of great value for their possible widespread use for structural studies of chromatin. 相似文献
8.
【目的】基于人类基因文库,构建一个筛选抑制酿酒酵母生长的人类基因的方法,并运用此方法筛选含有生长抑制性人源蛋白质的酿酒酵母,用于分析人类基因的生理功能及其抑制剂的寻找。【方法】利用Gateway~(TM)重组技术将人类蛋白质编码基因构建到酿酒酵母表达质粒中。得到的质粒分别转化酿酒酵母细胞中,分析哪些基因的表达会抑制酿酒酵母的生长,并用绿色荧光蛋白标签对典型候选基因在酿酒酵母中的定位进行观察。【结果与结论】本研究建立了抑制酿酒酵母生长的人类基因的筛选方法,并运用此方法成功地从2991个人类蛋白质编码基因中筛选到29个显著抑制酿酒酵母生长的基因。其中一些是引起人类疾病的致病基因。例如,PDLIM4参与到骨质疏松症和前列腺癌的形成和发展,但其生理功能尚不清楚。我们的研究可能为揭示这些候选基因的功能和调节机制提供新的途径。 相似文献
9.
Genetic analysis of inducible sexual agglutination ability in the yeast Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Yoshiyuki Nakagawa 《Archives of microbiology》1989,151(3):198-202
Genetic regulation of the inducibility of sexual agglutination ability in the yeast Saccharomyces cerevisiae was studied. Detailed analysis of the degree of sexual agglutination was carried out; it showed that a greater number of genes are involved in the regulation of inducible sexual agglutination in strain H1-0 than previously assumed. Although dominancy of inducible phenotype over constitutive was confirmed, the effectiveness of one gene changing the constitutive phenotype to the inducible seemed to be somewhat low. Quantity per cell of agglutination substances responsible for sexual agglutination increased as the agglutination ability became greater. 相似文献
10.
11.
采用低温底层发酵的拉格(lager)啤酒15世纪开始在德国巴伐利亚地区出现,19世纪初流行至全世界,目前已成为全球产量最高的酒精饮料。目前已阐明,拉格啤酒发酵酵母为巴斯德酿酒酵母(Saccharomyces pastorianus),该种是一个杂交种,由艾尔(ale)啤酒酵母(Saccharomyces cerevisiae)与野生真贝氏酿酒酵母(Saccharomyces eubayanus)杂交而成,后者赋予了拉格啤酒酵母的耐低温能力。近年的群体遗传学和群体基因组学研究表明,拉格啤酒酵母的野生亲本S.eubayanus起源于青藏高原,可能通过丝绸之路传播到了欧洲。比较基因组学研究表明,拉格啤酒酵母包含2个株系,即Ⅰ系/Saaz系和Ⅱ系/Frohberg系,早期分别流行于中欧和西欧地区。前者为近似异源3倍体,后者为近似异源4倍体。2个株系在耐低温、麦芽三糖利用和风味物质产生能力等方面具有明显差异。在中国普通微生物菌种保藏管理中心(China General Microbiological Culture Collection Center,CGMCC)保藏的S.pastorianus... 相似文献
12.
Augustin Svoboda 《Archives of microbiology》1976,110(2-3):313-318
Protoplasts prepared from complementary haploid strains ofSaccharomyces cerevisiae were studied with regard to their ability of conjugating. Neither fresh protoplasts nor the growing protoplasts possessing fibrillar walls exhibited sex specific agglutination or fusion. However, they were capable of inducing sexual activation in normal cells of opposite mating type. After completing the regeneration of cell walls the protoplasts could conjugate either with each other or with cells of opposite sex. The frequency of conjugations was low, about 1%, and was largely dependent on the degree of completition of the wall during regeneration. From the results the following conclusions may be drawn: 1. The initiation of mating is dependent on the integrity of the cell wall. 2. The sex specific morphogenetic changes do not occur in wall-less protoplasts but may happen after the protoplasts have regenerated their cell walls. 3. The lysis of cell walls does not occur until the walls come into close contact. 4. The fusion of plasma membranes in sex-activated protoplasts cannot be induced by artefucial agglutination. 相似文献
13.
A. S. Baptista A. L. Abdalla C. L. Aguiar Ana Angelita Sampaio Baptista David Micheluchi A. C. Zampronio D. S. Pires E. M. Glória M. A. Calori-Domingues J. M. M. Walder M. R. Vizioli J. Horii 《World journal of microbiology & biotechnology》2008,24(11):2547-2554
Although the effects of aflatoxin on animal performance have been well established in previous studies, there are few studies
reporting on the relationship between aflatoxin and Saccharomyces cerevisiae. The ability of Saccharomyces cerevisiae to minimize aflatoxicosis was evaluated. An aflatoxin-free diet and six contaminated diets (400 μg kg−1 aflatoxin) were formulated with five diets containing the viable yeast (Y1026 or Y904). A 28-day bioassay using 21-day-old
and 60-g body weight Wistar rats was conducted. The results showed that there were no significant (P > 0.05) differences for: food consumption; daily weight gain; food conversion, and enzyme activity. Hepatic tissues from
the aflatoxin control group suffered from hepatotoxicity, cellular disorganization, and hepatocyte necrosis. The inclusion
of yeast or yeast and amino acids (methionine and cysteine) reduced the toxicity.
A. S. Baptista received fellowship from FAPESP. 相似文献
14.
Teixeira MC Telo JP Duarte NF Sá-Correia I 《Biochemical and biophysical research communications》2004,324(3):1101-1107
The pro-oxidant action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated in this study using Saccharomyces cerevisiae as a eukaryotic experimental model. Evidence is presented for the generation of hydroxyl-radicals, in yeast cells suddenly exposed to 2,4-D, detected by in vivo electron paramagnetic resonance (EPR) spectroscopy using 5,5'-dimethyl-1-pyrroline N-oxide and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide as spin-traps. The intensity of the EPR spectra was dependent on the concentration of herbicide tested and was consistently higher in a mutant (Deltasod1) devoid of the cytosolic CuZn-superoxide dismutase. A time-course-dependent variation of the level of free-radical adducts was registered upon sudden exposure of an yeast cell population to concentrations of 2,4-D that lead to an initial period of viability loss, before resumption of inhibited growth by the viable adapted population. The variation pattern of the level of hydroxyl-radical adducts correlated with the one determined for the activity of Sod1p, cytosolic catalase Ctt1p, and the dithiol glutaredoxins Grx1p and Grx2p. 相似文献
15.
16.
Francesca Galiazzo Jens Zacho Pedersen Patrizia Civitareale Alma Schiesser Giuseppe Rotilio 《Biometals》1989,2(1):6-10
Summary Manganese accumulation was studied by room-temperature electron spin resonance (ESR) spectroscopy inSaccharomyces cerevisiae grown in the presence of increasing amounts of MnSO4. Mn2+ retention was nearly linear in intact cells for fractions related to both low-molecular-mass and macromolecular complexes (free and bound Mn2+, respectively). A deviation from linearity was observed in cell extracts between the control value and 0.1 mM Mn2+, indicating more efficient accumulation at low Mn2+ concentrations. The difference in slopes between the two straight lines describing Mn2+ retention at concentrations lower and higher than 0.1 mM, respectively, was quite large for the free Mn2+ fraction. Furthermore it was unaffected by subsequent dialyses of the extracts, showing stable retention in the form of low-molecular-mass complexes. In contrast, the slope of the line describing retention of bound Mn2+ at concentrations higher than 0.1 mM became less steep after subsequent dialyses of the cell extracts. This result indicates that the macromolecule-bound Mn2+ was essentially associated with particulate structures. In contrast to Cu2+, Mn2+ had no effect on the major enzyme activities involved in oxygen metabolism except for a slight increase of cyanide-resistant Mn-superoxide dismutase activity, due to dialyzable Mn2+ complexes. 相似文献
17.
Verbelen PJ De Schutter DP Delvaux F Verstrepen KJ Delvaux FR 《Biotechnology letters》2006,28(19):1515-1525
In several yeast-related industries, continuous fermentation systems offer important economical advantages in comparison with traditional systems. Fermentation rates are significantly improved, especially when continuous fermentation is combined with cell immobilization techniques to increase the yeast concentration in the fermentor. Hence the technique holds a great promise for the efficient production of fermented beverages, such as beer, wine and cider as well as bio-ethanol. However, there are some important pitfalls, and few industrial-scale continuous systems have been implemented. Here, we first review the various cell immobilization techniques and reactor setups. Then, the impact of immobilization on cell physiology and fermentation performance is discussed. In a last part, we focus on the practical use of continuous fermentation and cell immobilization systems for beer production. 相似文献
18.
Baker's yeast suspensions were incubated at different pressures (from 1 bar to 6 bar) and different gases [air, O(2) and a mixture of 8% (v/v) CO(2), 21% O(2) and N(2)]. Raising the air pressure from 1 bar to 6 bar stimulated cell growth but had no effect on leavening ability or viability of the cells. A 50% reduction of the CO(2) produced in dough occurred with 6 bar O(2) which also stopped growth. The fermentative capacity of the cells was stimulated by the cells exposure to increased CO(2) partial pressure up to 0.48 bar. 相似文献
19.
Summary The fidelity of translation in the yeast Saccharomyces cerevisiae is controlled by a number of gene products. We have begun a molecular analysis of such genes and here describe the cloning and analysis of one of these genes, SAL3. Mutations at this locus, and at least four other unlinked loci (designated SAL1-SAL5), increase the efficiency of the tRNA ochre suppressor SUQ5, and are thus termed allosuppressors. We have cloned the SAL3 gene from a yeast genomic library by complementation of a sal3 mutation. Integration of the cloned sequence into the yeast chromosome was used to confirm that the SAL3 gene had been cloned. SAL3 gene is present in a single copy in the yeast genome, is transcribed into a 2.3-kb polyadenylated mRNA and encodes a protein of Mr 80 000. The size of the SAL3 gene product strongly suggests that it is not a ribosomal protein. 相似文献
20.
《Microbes and infection / Institut Pasteur》2017,19(12):580-586
Virus-induced oxidative stress plays an important role in the regulation of the host immune system. In this review, we provide backgrounds of the pathogenic mechanism of oxidative stress induced by influenza virus and the specific oxidant-sensitive pathways, and highlight that antioxidant is one of the effective strategies against influenza virus infection. 相似文献