首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Immunologic basement membrane injury occurs in certain human diseases. We investigated the role of mast cells in the initiation of inflammation induced by selective deposition of antibody on the basement membrane in the skin. Intradermal injection of the antibody into mast cell-deficient WBB6F1-W/Wv mice and their congenic controls, WBB6F1-+/+, caused C (C3) deposition and tissue damage preferentially at the dermo-epidermal junction (basement membrane). Damage occurred earlier and was more extensive in normal than in WBB6F1-W/Wv mice. Hemorrhage in WBB6F1-W/Wv was reduced by 50%. In both groups of mice, a dose- and time-dependent neutrophil infiltration reached maximum at 8 h. At the peak, neutrophil accumulation in WBB6F1-W/Wv was only 50% of that in normal mice. Mast cell reconstitution of WBB6F1-W/Wv mice normalized the inflammatory response. Pretreatment with a 5-lipoxygenase inhibitor, A-63162, reduced neutrophil infiltration by 60% in normal but not in WBB6F1-W/Wv mice. Mast cell repletion restored the effect of A-63162. The results indicate that mast cells are important for the initiation of inflammation induced by the deposition of antibody on the basement membrane and the production of leukotrienes participating in neutrophil elicitation.  相似文献   

2.
We investigated the issue of mast cell heterogeneity by cloning mast cell colonies from peritoneal cells in methylcellulose, injecting the cloned cells into the skin and stomach of mast cell-deficient (WB X C57BL/6)F1-W/Wv (WBB6F1-W/Wv) mice, and staining the mast cells that developed in these sites with Berberine sulfate, a fluorescent dye that identifies heparin-containing mast cells. When peritoneal cells of nontreated WBB6F1-+/+ mice were plated in methylcellulose containing pokeweed mitogen-stimulated spleen cell conditioned medium, pure mast cell colonies developed. In contrast, the peritoneal cavity of genetically mast cell-deficient WBB6F1-W/Wv mice lacked the progenitor cells that made mast-cell colonies. The clonal nature of the mast cell colonies was determined by using the giant granules of C57BL/6-bgJ/bgJ mice as a marker: even when mixture of peritoneal cells of C57BL/6-bgJ/bgJ mice and C57BL/6-+/+ mice were plated, all of the resulting colonies consisted of either bgJ/bgJ-type mast cells alone or +/+-type mast cells alone. Individual mast c 11 colonies of WBB6F1-+/+ mouse origin were divided into two parts; one part was directly injected into the wall of the glandular stomach of a WBB6F1-W/Wv mouse, and another part was injected into the skin of the same W/Wv mouse. Injections of 14 of 46 such colonies resulted in development of mast cells in both the "connective tissues" (skin or stomach muscle or both) and the stomach mucosa. Mast cells in the connective tissues were stained with Berberine-sulfate, indicating that they contained heparin, whereas mast cells in the stomach mucosa were not. These results suggest that a single precursor cell can give rise to both "connective tissue-type" and "mucosal" mast cells.  相似文献   

3.
The role of mast cells in thioglycollate-induced inflammation   总被引:3,自引:0,他引:3  
The possible role of mast cells in the initiation of inflammation was studied in genetically mast cell-deficient mice, WBB6F1-W/Wv. Inflammation was induced by i.p. injection of thioglycollate. The influx of neutrophils was markedly delayed in WBB6F1-W/Wv mice as compared to the WBB6F1-+/+, mice (congeneic controls). At the time (14 h) of maximum influx of neutrophils in WBB6F1-+/+ mice, thioglycollate caused a 3-fold increase in the total cell number in the peritoneal lavage fluid, and the neutrophil count was elevated 14-fold. At the same time point in W/Wv mice, the total cell number in the peritoneal lavage fluid was not increased significantly and the neutrophils were increased only three- to four-fold. Not only was the neutrophil influx in WBB6F1-W/Wv mice delayed, but the length of time during which the neutrophil count was elevated in the peritoneal fluid was significantly shortened. Transfer (i.p.) of mast cells cultured from the bone marrow of congeneic controls corrected the delay in the neutrophil influx. The magnitude of the neutrophil influx in WBB6F1-W/Wv mice was equivalent to that of congeneic controls 9 days after mast cell repletion. Histologic studies were performed to follow the migration and differentiation of mast cells after adoptive transfer into WBB6F1-W/Wv mice. No connective tissue mast cells could be identified on day 9 when the inflammatory reaction was restored. Migration of mast cells into the tissue, as studied in the cecum, progressed steadily. On day 9 after adoptive transfer, the mast cell number was 38% of congeneic controls. Therefore, the increase in thioglycollate-induced neutrophil influx in WBB6F1W/Wv mice after mast cell repletion seemed to be correlated, at least to some extent, with the migration of mast cells into tissues and not with differentiation into connective tissue mast cells. However, a certain maturation and differentiation may have occurred. These results suggest that mast cells play an important role, although they do not seem to be the only cell type responsible for the initiation of inflammation.  相似文献   

4.
The role of mast cells in polymorphonuclear leukocyte (PMN) influx in Ag-antibody complex-induced peritonitis was evaluated in mast cell-deficient WBB6F1-W/Wv (W/Wv) mice and their normal littermates, WBB6F1-+/+ (+/+). Peritoneal cell influx was evaluated after i.p. injection of preformed immune complexes. The first significant elevation in the PMN count over PBS-treated controls in +/+ mice was observed 2 h after stimulation. During the period of maximum leukocyte concentrations (6 to 10 h), the increase in total cell count was 5-fold and in PMN 25-fold. In W/Wv mice the PMN influx started 2 h later than in the +/+ mice, and the maximum response (8 to 10 h) was only 50% of that in controls. Reconstitution of mast cells in W/Wv mice for 2 wk or more restored the PMN response to immune complexes. Mast cell release due to AG-antibody complexes was evaluated by measuring fluorescence intensity after berberine sulfate staining for heparin in mast cells from unstimulated as well as stimulated +/+ mice. There was a significant decrease in fluorescence intensity as early as 15 min after stimulation. By 30 min the fluorescence intensity had declined by 65%. This indicates extensive mast cell release that started before PMN mobilization. These experiments demonstrate that mast cells make a significant contribution to immune complex-induced inflammation.  相似文献   

5.
Mast cells clearly are critical for the expression of some IgE-dependent responses, but their roles in other forms of inflammation are uncertain. We previously described a new model system for defining the unique contribution of mast cells to biologic responses in vivo, genetically mast cell-deficient WBB6F1-W/Wv mice that have undergone selective local repair of their mast cell deficiency by the injection of IL-3-dependent cultured mast cells derived from the congenic normal (WBB6F1-+/+) mice. Using this approach, we analyzed the contribution of mast cells to the acute inflammation induced by the epicutaneous application of PMA. Even though PMA can activate a wide variety of cell types that may contribute to acute inflammation, we found that mast cells were required for the full expression of the tissue swelling and leukocyte infiltration associated with the response to the agent in vivo. Thus, in WBB6F1-W/Wv mice selectively reconstituted with dermal mast cells by intradermal injection of cultured WBB6F1-+/+ mast cells into the left ear only, PMA induced approximately twice the tissue swelling and neutrophil infiltration in the mast cell-reconstituted left ears as in the contralateral control ears. This represents the first use of W/Wv mice locally reconstituted with mast cells to confirm the hypothesis that mast cells can represent an important amplification mechanism in acute inflammatory responses of nonimmunologic origin. It also defines a model system that may be generally useful for investigating mast cell-dependent and -independent aspects of acute inflammatory responses.  相似文献   

6.
Mast cells may be classified into at least two phenotypically distinct populations: connective tissue-type mast cells (CTMC) and mucosal mast cells (MMC). Mast cells in the peritoneal cavity of mice are typical CTMC, whereas mast cells in the mucosa of the stomach show morphologic characteristics of MMC. We investigated whether CTMC may change to MMC. A single peritoneal mast cell of WBB6F1-+/+ mice was identified under the phase-contrast microscope, picked up with the micromanipulator, and injected into the stomach wall of genetically mast cell-deficient WBB6F1-W/Wv mice. The cells with histochemical and electron microscopical features of MMC developed in the mucosa, and those with histochemical features of CTMC in the muscularis propria. This directly demonstrates that a certain proportion of CTMC may function as a bipotent precursor for both MMC and CTMC.  相似文献   

7.
Substance P, a potent vasodilatory neuropeptide, is released from peripheral nerve endings of sensory neurons by various stimuli. Although in vitro incubation of rat and human mast cells with substance P causes their degranulation, it is not known whether inflammatory changes induced by substance P are mediated by degranulation of mast cells. We investigated this point by using genetically mast cell-deficient WBB6F1-W/Wv and WCB6F1-Sl/Sld mice. The s.c. injection of substance P induced degranulation of mast cells in the skin of WBB6F1-+/+ mice, and then a marked eosinophil infiltration around the degranulated mast cells. However, WBB6F1-W/Wv and WCB6F1-Sl/Sld mice showed little or no eosinophil infiltration in the skin after the injection of substance P. When the mast cell deficiency of WBB6F1-W/Wv mice was rescued either systemically by bone marrow transplantation or locally by injection of cultured mast cells, injection of substance P induced the infiltration of eosinophils, suggesting that substance P-induced eosinophil infiltration was mediated through degranulation of mast cells.  相似文献   

8.
Genetically mast cell-deficient WBB6F1-W/Wv mice showed an apparent defect in manifestation of the resistance against larval Haemaphysalis longicornis ticks, but their serum IgE levels increased more than 100-fold after the second tick infestation. Immune sera obtained from the WBB6F1-W/Wv mice were adoptively transferred to the other WBB6F1-W/Wv mice which had received intracutaneous injections of WBB6F1-+/+ mouse-derived cultured mast cells. Because the resistance against ticks was detectable only when both mast cells and IgE antibodies were available, immediate hypersensitivity reaction appeared to have a physiologic role in the manifestation of the resistance against H. longicornis ticks.  相似文献   

9.
The role of mast cells in induction of uterine eosinophilia was investigated by using genetically mast cell-deficient (WB X C57BL/6)F1-W/Wv (hereafter called WBB6F1-W/Wv) mice. The injection of estradiol-17 beta (0.16 micrograms/g body weight) increased the peroxidase activity and eosinophil number in the uteri of castrated WBB6F1-W/Wv and WBB6F1-+/+ mice. Since no significant differences were detectable between these two type of mice, mast cells did not seem to be essential for the estrogen-induced uterine eosinophilia, at least in mice.  相似文献   

10.
When bone marrow cells of (WB X C57BL/6)F1-+/+ (WBB6F1-+/+) and WB-+/+ (WB) mice were directly injected into the skin of genetically mast cell-deficient WBB6F1-W/Wv mice, mast cell clusters appeared at the injection sites. However, the number of WB bone marrow cells necessary for appearance of mast cell clusters was significantly larger than when bone marrow cells of WBB6F1-+/+ mice were used. When WB bone marrow cells were mixed either with WB thymus cells or with silica particles, the proportion of injection sites at which mast cell clusters appeared increased to the level that was observed after the injection of the same number of WBB6F1-+/+ bone marrow cells. When suckling WBB6F1-W/Wv mice of less than or equal to 18 days of age were used as recipients, bone marrow cells of WBB6F1-+/+ and WB mice produced mast cell clusters with a comparable efficiency. Both syngeneic thymus cells and silica particles are known to abrogate the hybrid resistance that is observed in the spleen against parental hematopoietic stem cells. The hybrid resistance in the spleen is not detectable in suckling mice, either. Thus, the poor growth of mast cell precursors in the skin and the poor growth of hematopoietic stem cells in the spleen seem to be regulated by the same mechanism.  相似文献   

11.
Connective tissue-type mast cells (CTMC) and mast cells grown in vitro exhibit many differences in morphology, biochemistry, and function. When cultured mast cells of WBB6F1-+/+ mouse origin were injected into the peritoneal cavity of genetically mast cell-deficient WBB6F1-W/Wv mice, however, the cultured mast cells acquired characteristics similar to CTMC. In this study, we analyzed the changing process. When the density of the cultured mast cells was measured by Percoll density gradient centrifugation, the proportion of dense mast cells increased after injection into the peritoneal cavity. Because the increase in proportion of dense mast cells paralleled the increase in proportion of heparin-containing mast cells, both parameters may be used as an index for differentiation activity of cultured mast cells into CTMC. When proliferation activity of mast cells was estimated by the incorporation of bromodeoxyuridine, the proliferation activity decreased after the i.p. transfer. Moreover, when cultured mast cells were recovered 10 wk after the i.p. transfer, the mast cells almost lost proliferation activity in the same culture condition that had been used for establishment of cultured mast cells from the bone marrow of WBB6F1-+/+ mice. These results demonstrate that the proliferation arrest and the acquisition of CTMC-like characters are associated after i.p. transfer of cultured mast cells.  相似文献   

12.
Injection of Staphylococcal enterotoxin A (SEA) into WBB6F1-W/WV mice genetically deficient in mast cells resulted in a 10-fold increase in the histidine decarboxylase [HDC, L-histidine carboxylase, EC 4.1.1.22] activity of their spleen. The nature of the spleen cells responsible for this increased HDC activity was studied. The HDC induction by SEA was abolished on day 1 after X-ray irradiation of the mice at 400 rad and restored by transplantation of bone marrow cells from normal WBB6F1-+/+ littermates into the X-ray irradiated WBB6F1-W/WV mice. Transplantation of cells from other organs of the normal mice, such as the thymus, mesenteric lymph node and spleen, did not restore the HDC increase significantly. Transplantation of cultured mast cells also did not restore the increase. Moreover, the high HDC activity of spleen cells induced by SEA was not affected by their treatment with anti-Thy-1,2 antibody and complement. Depletion of phagocytes from the spleen by treatment with carbonyl iron resulted in decrease in HDC activity. These results suggested that phagocytic cells derived from haemopoietic stem cells of the bone marrow were responsible for the increase in HDC activity induced by SEA.  相似文献   

13.
Proliferative potential of degranulated mast cells was investigated. Mast cells were collected from the peritoneal cavity of mice, and degranulation was induced by compound 48/80, substance P, 12-O-tetradecanoylphorbol 13-acetate (TPA), or calcium ionophore A23187. The potentiality of colony formation in methylcellulose was not reduced by treatment of various concentrations of compound 48/80, substance P and TPA. When degranulation was induced by compound 48/80, substance P or TPA, proportion of highly degranulated mast cells containing less than five granules was rather small. In contrast, considerable proportion of highly degranulated mast cells was obtained after the treatment with the low concentration (0.1 microgram/ml) of A23187. These highly degranulated mast cells, which were individually picked up by the micromanipulator, proliferated not only in methylcellulose but also in the skin of mast cell-deficient WBB6F1-W/Wv mice. Inasmuch as we have already shown the proliferation of IgE-sensitized and Ag-stimulated mast cells, degranulated mast cells appear to retain the proliferative potential in general.  相似文献   

14.
The role of mast cells in the elicitation of contact sensitivity (CS) responses was evaluated by transferring different aliquots of the same preparations of immune lymph node cells (I-LNC) into naive, genetically mast cell-deficient (WBB6F1-W/Wv or WCB6F1-S1/S1d) mice and the corresponding congenic normal (+/+) mice. We found that the 24-hr CS responses elicited in the recipient mast cell-deficient mice were statistically indistinguishable from those in the congenic +/+ mice according to four different criteria: micrometer measurements of ear swelling, ratios of the weight or [125I]iododeoxyuridine-labeled leukocyte infiltration-associated cpm in challenged and contralateral control ears, and amount of 125I-fibrin deposition. We also transferred I-LNC into WBB6F1-W/Wv mice which, 5 months earlier, had undergone local repair of their mast cell deficiency by the intradermal injection (into the left ear only) of growth factor-dependent cultured mast cells derived from congenic +/+ mice. When 24-hr CS responses were elicited in both ears of these mice, the reactions in the mast cell-reconstituted left ears were similar to those in the mast cell-deficient right ears. We also found that treatment of antigen-specific cloned T cells with reserpine in vitro markedly impaired their ability to transfer reactivity for CS, providing further evidence that reserpine can interfere with the expression of T-cell-mediated responses through effects independent of its action on mast cells.  相似文献   

15.
16.
Atrial natriuretic peptide (ANP) is widely distributed throughout the heart, skin, gastrointestinal and genital tracts, and nervous and immune systems. ANP acts to mediate vasodilation and induces mast cell activation in both human and rats in vitro. However, the mechanisms of ANP-induced mast cell activation, the extent to which ANP can induce tissue swelling, mast cell degranulation, and granulocyte infiltration in mouse skin are not fully understood. This issue was investigated by treatment with ANP in rat peritoneal mast cells (RPMCs) and mouse peritoneal mast cells (MPMCs) in vitro and by injection of ANP into the skin of congenic normal WBB6F1/J-Kit+/Kit+ +/+, genetically mast cell-deficient WBB6F1/J-Kit(W)/Kit(W-v) (W/W(v)) and mast cell-engrafted W/W(v) (BMCMC→W/W(v)) mice in vivo. ANP induced the release of histamine and TNF-α from RPMCs and enhanced serotonin release from MPMCs, in a dose-dependent fashion, as well as reduced cAMP level of RPMCs in vitro. In +/+ mice, ANP induced significant tissue swelling, mast cell degranulation, and granulocyte infiltration in a dose-dependent manner, whereas not in genetically mast cell-deficient W/W(v) mice. However, ANP-induced cutaneous inflammation has been restored in BMCMC→W/W(v) mice. These data indicate that mast cells play a key role in the ANP-induced cutaneous inflammation.  相似文献   

17.
We investigated the clotting associated with IgE-dependent immediate hypersensitivity reactions in the mouse by injecting monoclonal mouse anti-dintrophenyl IgE antibodies i.d. and, the next day, administering 125I-guinea pig fibrinogen i.v. 10 to 30 min before i.v. antigen (2,4-dinitrophenylated human serum albumin) challenge. In normal mice, 2-hr passive cutaneous anaphylaxis (PCA) reactions were associated with substantial leakage of 125I-fibrinogen and deposition of 125I-fibrin. Thus, ears injected with IgE contained up to six times the total cpm of 125I and up to 30 times the cross-linked 125I-fibrin-associated cpm of 125I than did control ears. Several lines of evidence indicated that the 125I-fibrin deposition associated with the PCA reactions was dependent on the activity of mast cells: 1) Mast cell degranulation occurred at sites of PCA reactions. 2) Antigen-induced influx of 125I-fibrinogen and deposition of 125I-fibrin were virtually abolished by heating the IgE (56 degrees C, 1 hr) before i.d. injection. 3) Little or no IgE-dependent 125I-fibrinogen influx or 125I-fibrin deposition occurred in mast cell-deficient WBB6F1-W/Wv or WCB6F1-S1/S1d mice X 4) Adoptive transfer of cutaneous mast cell populations into WBB6F1-W/Wv mice (by each of three approaches: i.v. transplantation of normal bone marrow cells or local i.d. injection of cultured, growth factor-dependent mast cells 2 days or 9 to 10 wk before antigen challenge) conferred on the recipients the ability to express the 125I-fibrinogen influx and 125I-fibrin deposition associated with PCA reactions. These data demonstrate that 125I-fibrinogen influx and 125I-fibrin deposition occurs in association with PCA reactions in the mouse, and that the reaction is largely or entirely dependent on the function of cutaneous mast cells. The experiments also demonstrate the utility of a novel model system for the analysis of mast cell function in vivo: WBB6F1-W/Wv mice locally reconstituted with mast cells by the injection of mast cell populations generated in vitro.  相似文献   

18.
Mast cells infiltrate the inflammatory microenvironment and regulate the production of many pro-inflammatory cytokines and mediators of inflammatory cell production to promote tumor development and growth in intestinal lesions. Currently, there are insufficient studies of the mediators and signaling pathways regulated by mast cells that influence the pathogenesis of colon cancer in inflamed colon tissue. This study aimed to confirm the role of mast cells in the incidence and growth of colitis-associated colon cancer (CAC) and to identify inflammation-mediated factors and signaling pathways related to tumor development. CAC was induced by the administration of azoxymethane (AOM) and dextran sodium sulfate (DSS) in mast cell-deficient (WBB6F1/J-W/WV) and mast cell–sufficient control (WBB6F1_+/+) mice. The results confirmed that mast cell-deficient mice exhibited less tumor formation than normal mice under the same conditions, and down-regulated expression of pro-inflammatory cytokines and mediators. Mast cells play an important role in tumor formation by regulating pro-inflammatory cytokines and inflammatory mediators in CAC, indicating that they can act as new targets for the prevention and treatment of CAC.  相似文献   

19.
The immunological mechanisms underlying the role of mast cells in the pathogenesis of inflammatory bowel disease (IBD) are poorly defined. In this study, non-IgE mediated colonic hypersensitivity responses in BALB/c mice induced by skin sensitization with dinitrofluorobenzene (DNFB) followed by an intrarectal challenge with dinitrobenzene sulfonic acid featured as a model to study the role of mast cells in the development of IBD. Vehicle- or DNFB-sensitized mice were monitored for clinical symptoms and inflammation 72 h after dinitrobenzene sulfonic acid challenge. DNFB-sensitized mice developed diarrheic stool, increased colonic vascular permeability, hypertrophy of colonic lymphoid follicles (colonic patches), and showed cellular infiltration at the microscopic level. Increased numbers of mast cells were found in the colon of DNFB-sensitized mice located in and around colonic patches associated with elevated levels of mouse mast cell protease-1 in plasma indicating mast cell activation. Colonic patches of DNFB mice, stimulated in vitro with stem cell factor indicated that an increase in TNF-alpha levels in the colon is mainly mast cell originated. Finally, neutrophil infiltration was observed in the colon of DNFB-sensitized mice. Induction of this model in mast cell-deficient WBB6F(1) W/W(v) mice shows a profound reduction of characteristics of the colonic hypersensitivity reaction. Reconstitution with bone marrow-derived mast cells in WBB6F(1) W/W(v) mice fully restored the inflammatory response. This study demonstrates the importance of mast cells in the development of clinical symptoms and inflammation in the presented murine model for IBD.  相似文献   

20.
Mast cells are associated with inflammation and fibrosis. Whether they protect against or contribute to renal fibrosis is unclear. Based on our previous findings that mast cells can express and secrete active renin, and that angiotensin (ANG II) is profibrotic, we hypothesized that mast cells play a critical role in tubulointerstitial fibrosis. We tested this hypothesis in the 14-day unilateral ureteral obstruction (UUO) model in rats and mast cell-deficient (MCD) mice (WBB6F1-W/Wv) and their congenic controls (CC). In the 14-day UUO rat kidney, mast cell number is increased and they express active renin. Stabilizing mast cells in vivo with administration of cromolyn sodium attenuated the development of tubulointerstitial fibrosis, which was confirmed by measuring newly synthesized pepsin-soluble collagen and blind scoring of fixed trichrome-stained kidney sections accompanied by spectral analysis. Fibrosis was absent in UUO kidneys from MCD mice unlike that observed in the CC mice. Losartan treatment reduced the fibrosis in the CC UUO kidneys. The effects of mast cell degranulation and renin release were tested in the isolated, perfused kidney preparation. Mast cell degranulation led to renin-dependent protracted flow recovery. This demonstrates that mast cell renin is active in situ and the ensuing ANG II can modulate intrarenal vascular resistance in the UUO kidney. Collectively, the data demonstrate that mast cells are critical to the development of renal fibrosis in the 14-day UUO kidney. Since renin is present in human kidney mast cells, our work identifies potential targets in the treatment of renal fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号