首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugars play an important role in grapevine flowering. This complex process from inflorescence initiation to fruit maturity takes two growing seasons. Currently, most of the available data concern the involvement of sugars as energy sources during the formation of reproductive structures from initiation of inflorescences during the summer of the first year, until flower opening during the following spring. Sugars devoted to the development of reproductive structures are supplied either by wood reserves or by photosynthesis in leaves or inflorescences, depending on the stage of development. Female meiosis appears to be a key point in the success of flower formation because (i) flowers are vulnerable at this stage and (ii) it corresponds in the whole plant to the transition between reserve mobilization from perennial organs (roots, trunk, and canes) towards efficient leaf photosynthesis. The perturbation of reserve replenishment during the previous year provokes perturbation in the development of inflorescences, whereas altering the photosynthetic sources affects the formation of flowers during the same year. In particular, a lack of sugar availability in flowers at female meiosis caused by various environmental or physiological fluctuations may lead to drastic flower abortion. Apart from energy, sugars also play roles as regulators of gene expression and as signal molecules that may be involved in stress responses. In the future, these two topics should be further investigated in the grapevine considering the sensitivity of flowers to environmental stresses at meiosis.  相似文献   

2.
Free amino acids in 6-year-old kiwifruit vines [Actinidia deliciosa(A. Chev.) C. F. Liang et A. R. Ferguson] were measured overthe course of 1 year using components obtained from whole-vineharvests. Tissues examined from the perennial structure consistedof the wood and cortex of structural roots, wood and bark ofstem, leader and 1-year-old fruiting canes. Free acids in theannual growth (fine roots, flowers, fruit, leaves and non-fruitingshoots) were also measured. The range of amino acids extracted indicated that kiwifruitconforms to a conventional pattern of nitrogen metabolism. Acidspresent in greatest concentration depended on tissue type andsampling time. In perennial components and fine roots, arginineand glutamine were the predominant species, followed by gamma-aminobutyrate,aspartate, glutamate, alanine and valine. Generally, maximumconcentrations of all free acids were measured in a 10-weekperiod around budbreak. These same acids, plus asparagine, serineand threonine, were also prevalent in annual growth. In leaves,flowers and non-fruiting shoots, concentrations were greatestin the young tissue and declined with age. By contrast, concentrationsof arginine, asparagine and glutamine in fruit peaked approximately10 weeks after anthesis, subsequent to the cell division phaseof growth. During the year, free arginine averaged 44, 48 and 58 % of thetotal N in the fine roots, and the cortex and wood of structuralroots, respectively (the quantity of total N and amino-N inother components of the structural framework was much less thanthat in root tissue). Arginine was the principal N-containingspecies measured in xylem sap vacuum-extracted from 1-year-oldcanes over winter. During the period of vegetative growth, however,glutamine and nitrate were the principal N-transport forms present.The study highlights the importance of the fine root systemas the primary location of nitrogenous reserves in this plantand identifies arginine as the dominant N-storage form. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, amino acid composition, kiwifruit, nitrogen, whole-plant harvesting  相似文献   

3.
The accumulation of dry matter plus macro- and micronutnentsby various components of 6-year-old, field-grown kiwifruit vines(Actinidia deliciosa var deliciosa cv Hayward) was recordedover one season Twenty vines were harvested periodically throughoutthe year and separated into perennial components (roots <20 mm diameter, structural roots, stump, stem, cordon, one-year-oldfruiting wood) and current season's growth (non-fruiting shoots,laterals on fruiting wood, leaves and fruit) There was minimalseasonal variation (CVs < 7%) in biomass change in perennialcomponents of the vine Concentrations in these components eitherfluctuated about a constant value, or indicated a strong seasonaldependence Changes in biomass and nutnent concentrations incurrent season's growth, however, were very regular Prior tobudbreak, below-ground components contained between 48 and 81% of the total content of each element Roots < 20 mm diametercontained more total nutrient than any other perennial componentof the vine during the season, with the exception of Zn andCu, which were concentrated in the cordon There was consistentaccumulation of each nutrient from budbreak until harvest Ratesof greatest uptake occurred in the month following budbreak,or in the 3 weeks after anthesis Between dormancy and harvest,whole-vine contents increased for all nutrients Increases inFe, Mg, P, S and Zn ranged from 21 % (Zn) to 88% (Mg), and inB, Ca, Cl, Cu, K, N and Mn from 109% (Cu) to 302% (Cl) Despitethe large requirements of the current season's growth, net changesin the seasonal content of perennial components were relativelysmall Copper, Mg, P, N and Cl were the elements in which perennialreserves were utilized to the greatest extent to meet transientdeficits between nutnent demand for the current season’sgrowth, and that recently taken up from soil Generally, reserves utilized during the period of vegetativegrowth were replaced by harvest-time These observations, basedon application of a single fertiliser dressing before budbreak,suggest the vine maintains satisfactory fertility without theneed for late-season or post-harvest applications of fertiliserto supplement nutrient reserves, as occurs with some other fruitingcrops Actinidia deliciosa, kiwifruit, mineral nutrition, seasonal accumulation, whole-plant harvesting  相似文献   

4.
Ourry A  Kim TH  Boucaud J 《Plant physiology》1994,105(3):831-837
An experiment was designed to study the role of N and C reserves on regrowth of the shoots following defoliation of forage species. Starch and N accumulation in root and crown tissue of nonnodulated Medicago sativa L. were modified during regrowth by applying different levels of N and different cutting heights. Plants were obtained with similar crown and root dry weights, but having either low starch and high tissue N or high starch and low tissue N. The plants were then submitted to a second defoliation and supplied with optimal N nutrition, and N flow from reserve was quantified using pulse-chase 15N labeling. Maximum yields following the second regrowth were obtained from those plants having a high tissue N, despite their low level of nonstructural carbohydrate. When N in the roots and crown exceeded 5 mg N plant-1 at the beginning of regrowth, about 68% was translocated to regrowing shoots. Highly significant correlations were also found between the amounts of N available in roots and crown at the beginning of regrowth and (a) the amount of N that was mobilized to new tissues, (b) the amount of N taken up during the regrowth period, and (c) the final shoot yield after 24 d of regrowth. No similar correlations were found for plants that varied in their initial starch content of roots and crown. It is suggested that N reserves were used mainly during the first 10 d after defoliation, and that the resulting aerial growth during this period should be sufficient to restore N2 fixation and/or N uptake to levels equal to those prior to defoliation. These data emphasize (a) the importance of root N reserves in initiating and sustaining new shoot growth, and (b) the need for a re-evaluation of the contribution of C reserves to shoot regrowth.  相似文献   

5.
An analysis of the partitioning of carbohydrates in annual andperennial cotton was made to ascertain the distribution of assimilatesand constitution of reserves. Root/shoot dry matter ratio ishigh in perennial cotton and this plant shows a preferentialaccumulation of dry matter in roots corresponding to its adaptationto drought. Starch content is also higher in perennial cottonroots than in annual. It can be said that the earlier maturingthe cultivar, the lower the root/shoot ratio and the lower thestarch content. Nevertheless, at the whole plant level in annualcotton the starch content is highest in leaves where it is accumulatedbefore migration, and stem wood, and lowest in root and bark.While starch content in roots of annuals declines after 3 months,it is still increasing in perennials. Accumulation of carbohydratesas reserve material can be modified by selection and such selectionis accompanied by an increase in the activities of ß-amylasein exporting organs: leaves, woody tissue of the stem, and barkbut not in roots. Invertase activities were highest in leavesbut did not respond to selection. Non-irrigated cotton had ahigher activity of ß-amylase in leaves and stem woodcorresponding to the mobilization of reserve assimilates. Smallerincreases were observed in the activity of invertase. High yieldingannual cottons show a higher activity of ß-amylaseand invertase in leaves corresponding to a higher capacity ofassimilate transfer. Also a comparison was made from emergenceto 4 months of the partitioning of carbohydrates between leaf,stem and roots in annual and perennial cotton. In conclusionperennial cotton apparently owes its drought resistance to apartitioning of assimilates that favours the growth of the rootsystem and the accumulation of starch reserves in roots. Key words: Gossypium hirsutum L, carbohydrates, partitioning  相似文献   

6.
Mobilization of the reserve N in citrus   总被引:1,自引:1,他引:0  
The mobilization of N from reserve organs (leaves, roots, branches and trunk) to developing new organs was studied at different moments of the growth cycle. Three-year-old Valencia Late orange trees (Citrus sinensis (L.) Osbeck) were grown individually outdoors in 150 L containers filled with siliceous sand. Trees were irrigated with a nutrient solution labelled with potassium nitrate with an enrichment of 4 atom 15N % excess during a complete growth cycle. At the following year, plants were irrigated with unlabelled nutrient solution, and harvested throughout the growth cycle (flowering, fruit set, second flush, third flush, and dormancy). Total N and 15N analyses were carried out in the different organs of the plants.The highest amounts of N were found in leaves and roots (33–42% and 30–38%, respectively). Distribution of 15N was similar to that obtained for total N (42 and 39% of total 15N in leaves and roots, respectively) as is expected after a long period of labelling. Old leaves were the main reserve organs, contributing a 40–50% of the total N exported. Roots and aerial woody tissues exported between 30–35% and 15–25% of total reserve N, respectively. N exported by old leaves was approximately 57% of the N accumulated during the preceding year, while roots translocated 40% and trunk plus branches 35%. More than 70% of N accumulated in new organs during spring came from N stored in old organs.  相似文献   

7.
We examined whether nitrogen (N) and carbohydrates reserves allow Veratrum album, an alpine forb, to start spring growth earlier than the neighbouring vegetation and to survive unpredictable disturbances resulting in loss of above-ground biomass. * Seasonal dynamics of plant reserves, soil N availability and vegetation growth were monitored. Veratrum album shoots were experimentally removed when carbohydrate reserves were at a seasonal minimum and the subsequent changes in biomass and reserves were compared with those in control plants. Reserves did not give V. album a competitive advantage in spring; however, they did function as a buffer against the impact of calamities. Shoot removal resulted in significantly lower root dry weight, higher N concentration in rhizome and roots and lower starch concentrations in rhizome and roots but no plant mortality was observed. Veratrum album used stored N reserves to supplement N uptake and establish high leaf N concentrations, which facilitated a rapid refilling of depleted carbohydrate reserves. The primary function of N reserves appears to be to allow V. album to complete the growing cycle in as short a period as possible, thus minimizing exposure to above-ground risks.  相似文献   

8.
Nitrogen remobilization response to current supply in young citrus trees   总被引:2,自引:0,他引:2  
Internal nitrogen (N) storage and remobilization processes support seasonal growth (flowering/fructification and subsequent leaf development) in particular in early spring, when soil temperatures are unfavourable for adequate N uptake. Storage nitrogen mobilization in young citrus trees was studied under two contrasting N supplies; high N (HN) and low N dose (LN) in the critical period of flowering and fruit set. 15N labelling technique was used to distinguish N derived from internal remobilization from that taken up by the roots. Regardless N supply, the greatest N remobilization took place from the beginning of the vegetative activity until flowering. Low N availability significantly increased (+14%) N retranslocation at the end of June drop agreeing with the hypothesis that reserve mobilization depends on soil N availability during flowering and fruit set. At the end of fruit drop, N remobilization contributed up to 70% and 61% of total N of young organs for LN and HN, respectively. Remobilized N was mainly recovered in abscised organs of both HN and LN trees and to a lesser extent in new flush leaves; however a greater percentage partitioned to abscised organs of LN as a consequence of the greater remobilization rate and the increased fruit abscission. Old leaves of LN remobilized significantly higher N, while woody organs and root system did not show differences between HN and LN supplied trees. The results presented in this paper demonstrate that the amount of N remobilized by young citrus plants depends on external N availability. Thus, low N application rates in early stages (flowering and fruit set) lead to higher translocation of N stored during the previous cycle to developing new organs.  相似文献   

9.
During a 4-week period in late spring 1998 an extensive Prorocentrum minimum (Pavillard) Schiller bloom developed in several tributaries of the Chesapeake Bay. Experiments were carried out in one of these tributaries using 13C and 15N isotopic techniques to characterize C and N uptake as a function of irradiance during the course of this bloom. Uptake rates of N substrates (NO3, NH4+, urea, and an amino acid mixture) and C substrates (bicarbonate and urea) were measured. For each N substrate, short-term uptake rates (0.5 h) were not substantially different over the irradiance range measured, suggesting that N uptake of this dinoflagellate was not strongly light-dependent over this time scale. Dark uptake rates of all N substrates ranged between 35 and 113% of light uptake rates. Over the duration of the P. minimum bloom, however, total ambient N uptake rates increased with increasing natural irradiance. Uptake of bicarbonate showed typical light-dependent photosynthetic characteristics and the measured photosynthetic parameters suggested that at least on the short time scale (0.5 h), P. minimum cells were adapted to high light. Rates of C uptake from the substrate urea were minimal, <1% of total C uptake from photosynthesis, but doubled over the course of the bloom, and like N uptake, were not strongly light-dependent on the short time scale (0.5 h). Significant N dark uptake by P. minimum was likely to have been important by providing N sources over the daily scale to sustain the bloom.  相似文献   

10.
Seasonal Accumulation of Starch by Components of the Kiwifruit Vine   总被引:2,自引:2,他引:0  
The accumulation of starch by various components of 6-year-oldkiwifruit vines (Actinidia deliciosa var dehciosa cv Hayward)was recorded over one season Twenty vines were harvested periodicallythroughout the year and separated into perennial components(fibrous roots, structural roots, stump, stem, cordon, laterals)and current season's growth (shoots, leaves, and fruit) The concentration of starch in the fibrous roots followed asinusoidal trend Minimum concentrations occurred 98 d afterbudbreak, while the maximum concentrations occurred 182 d laterCorresponding times in the structural roots were approximately42 d earlier In the above-ground perennial components, elevatedconcentrations of starch in the cordon, fruiting wood and barkof the stem were evident at budbreak and fruit harvest (approx220 d later) In the case of the stem, concentrations were greatestat fruit harvest Because the biomass of the perennial componentswas found to be relatively constant throughout the year, starchconcentrations and contents were directly proportional in thesetissues For current season's growth, peak concentrations and contentsin leaves and shoots were observed at fruitset and fruit harvest,respectively For fruit, starch increased continuously untilharvest Approximately 30% of the total starch content accumulated inthe perennial components by leaf abscission was lost duringwinter and early summer Quantitative losses were greatest forthe roots Regeneration of the starch pools in the perennialcomponents of the vine occurred from midseason until leaf abscissionAt the same time, approximately five times more starch was accumulatedby the current season's growth, in particular the fruit, thanby the perennial components As a result of the difference inthe rate of accumulation, the starch content of the currentseason's growth increased from less than 10% midseason to nearly60% of the total starch content of the vine by fruit harvest The results were discussed in relation to the carbon economyof the kiwifruit vine, and compared with seasonal trends instarch concentrations found for other deciduous crops Actinidia deliciosa, kiwifruit, seasonal changes, starch content, whole plant  相似文献   

11.
This paper presents two models of budbreak on canes of 'Hayward' kiwifruit (Actinidia deliciosa). A conventional 'chill unit' (CU) type model is compared with an alternative 'loss of potential' (LOP) approach, which assumes that the number of buds developing in spring depends on climate and node position-dependent bud-to-bud interactions that vary in duration and intensity. Both models describe how temperature, and application of a dormancy-breaking chemical, determine the overall amount of budbreak for whole canes. However, the LOP model does so by describing patterns of budbreak along canes. To do this, the cumulative influence of distal neighbours is assumed to cause a progressive fall in the capacity for bud development over the autumn-winter period, an influence that gets stronger as temperature rises. The LOP model also assumes that the rate of decline varies along the cane, as a function of some inherent bud property. These two factors mean that buds towards the base of the cane break less often under the suppressive influence of distal neighbours, while low temperature ('chilling') increases budbreak by diminishing the intensity of suppression relative to bud development rate. Under this scenario, dormancy-breaking chemicals (such as hydrogen cyanamide, HC) enhance budbreak by diminishing the duration of suppression. Models were calibrated using daily temperature series and budbreak proportion data from a multi-year regional survey, and were then tested against independent data sets. Both models were run from a fixed start date until the time budbreak was almost complete, or until a standard date. The fitted models described 87 % of variation in amount of budbreak due to site, year, HC and node position effects in the original data set. Results suggest that the correlation between chilling and the amount of budbreak can be interpreted as a population-based phenomenon based on interaction among buds.  相似文献   

12.
富士苹果幼树生长与氮素积累和利用动态   总被引:1,自引:0,他引:1  
以6年生烟富3/SH6/平邑甜茶为试材,用整株破坏性解析的方法,研究了萌芽期至果实成熟期7个时期下的树体生长和氮素积累动态,并借助15N同位素示踪技术研究了树体对肥料氮的吸收利用和分配特性,以期阐明苹果树的氮积累动态和肥料氮的最大效率期,从而为科学施氮提供理论依据.结果表明: 萌芽期(3月25日)至果实成熟期(萌芽后210 d)红富士苹果幼树整株干物质净积累量为4.51 kg,其中果实占66.5%,叶梢(叶片与新梢,下同)占20.2%,多年生器官占13.3%;叶梢干物质积累量在萌芽后30~60 d增长幅度较大,占其整个处理时期的42.9%;果实干物质积累量在萌芽后120~180 d增长幅度大,占整个处理时期的70%.整株氮素净积累量为29.1 g,在萌芽后30~60 d和120~180 d增长较快,分别为7.2和12.8 g,占整个处理时期的24.7%和44%;叶梢在萌芽后0~60 d氮积累速率较快,占其整个时期的69.1%;果实的氮积累量在萌芽后120~180 d最快,占其整个时期的60.8%;多年生器官的氮积累量在处理周期内呈先下降后上升的趋势,并在萌芽后 60 d到达最低水平.树体在不同时期的15N利用率差异显著,分别在萌芽后30~60、120~150和150~180 d处于较高水平,15N利用率分别为2.3%、4.1%和4.0%;多年生器官在各个时期的15N分配率均呈现较高水平,新生器官的15N分配率均为先上升后下降的趋势,其中叶片新梢在萌芽后30~60 d达到最高水平,为38.4%;果实在萌芽后120~150 d和150~180 d到达最高水平,分别为15.0%和16.6%.因此,叶片和新梢氮素积累的关键时期为萌芽后30~60 d;果实氮素积累的关键时期为萌芽后120~180 d;树体对肥料氮的最大效率期为萌芽后30~60 d和120~180 d.  相似文献   

13.
A technique for reliable labeling of the carbon reserves of the trunk and roots without labeling the current year's growth of grapevines was developed in order to study retranslocation of carbon from the perennial storage tissues into the fruit in response to defoliation stress during the ripening period. A special training system with two shoots was used: the lower one (feeding shoot) was cut back and defoliated to one single leaf (14CO2-feeding leaf) while the other (main shoot) was topped to 12 leaves. The potted plants were placed in a water bath at 30 °C to increase root temperature and therefore their sink activity. Additionally, a cold barrier (2–4 °C) was installed at the base of the main shoot to inhibit acropetal 14C translocation. Using this method, we were able to direct labeled assimilates to trunk and roots in preference to the current year's growth. On vines with root and shoot at ambient temperature, 44% of the 14C activity was found in the main shoot 16 h after feeding whereas only 2% was found in the temperature-treated vines. At the onset of fruit ripening, and at three-week intervals thereafter until harvest, potted grapevines were fed with 14CO2 using the temperature treatment described above. Sixteen hours after feeding, half of the vines of each group were defoliated by removing all except the two uppermost main leaves. Three weeks after each treatment, vines were destructively harvested and the dry weight and 14C incorporation determined for all plant parts. Under non-stressing conditions, there was no retranslocation of carbon reserves to support fruit maturation. Vines responded to defoliation stress by altering the natural translocation pattern and directing carbon stored in the lower parts to the fruit. In the three weeks following veraison (the inception of ripening in the grape berry), 12% of the labeled carbon reserves was translocated to the fruit of defoliated plants compared to 1.6% found in the clusters of control vines. Retranslocation from trunk and roots was highest during the middle of the ripening period, when 32% of the labeled carbon was found in the fruit compared to 0.7% in control plants. Defoliation during this period also caused major changes in dry-matter partitioning: the fruit represented 31% of total plant biomass compared to 21% measured in the control vines. Root growth was reduced by defoliation at veraison and during the ripening period. Defoliation three weeks before harvest did not affect dry matter or 14C partitioning.  相似文献   

14.
The dynamics of N uptake and N partitioning in peach (Prunus persica, Batsch) trees of a very early (cv. Flordastar) and a very late (cv. Tudia) fruit ripening varieties grown under a mediterranean climate was assessed during one season. Labelled N was applied to two-year old potted trees which were destructively harvested at regular intervals during the vegetative and reproductive cycle. Tree phenology as well as vegetative and reproductive growth of the two genotypes strongly differed: bud burst started in late January in Flordastar and late March in Tudia. Leaf senescence in Flordastar was almost complete by mid October, while Tudia still retained a significant fraction of leaves at the December harvest. Fruit yield averaged 4.0 and 6.9 kg tree–1 (fresh weight) in cv. Flordastar and Tudia, respectively, and fruit size was within commercial standards for the two genotypes. After growth resumption, shoot and fruit growth mainly relied on N remobilised from reserves, which accounted for 72–80% of total N in new growth. Nitrogen uptake by both genotypes was relatively low in the first month after bud burst, then was more rapid until the end of the season. Total labelled N uptake did not differ between the two genotypes and accounted on average for 65–70% of total N supplied. The kinetics of labelled N uptake were similar in the two varieties despite the great difference in the timing of their fruit ripening. Leaves were the main sink for N during much of the experimental period. The fruits, when present, also used a significant fraction of the absorbed N, which was almost constant until fruit ripening in Flordastar. Nitrogen partitioning to leaves declined progressively after summer, when a greater fraction of the absorbed N was recovered in the twigs, the trunk, the fine roots and especially in the coarse roots. The data provide evidence for guiding the kinetics of N supply to peach orchards under a Mediterranean climate.  相似文献   

15.
Ratios of 13С/12C and 15N/14N isotopes were identified in different parts and organs of drooping birch (Betula pendula Roth) in preforest-steppe and pine-birch forests of the Middle Urals by mass spectrometry. The data were analyzed and interpreted from the perspective of biochemical processes of carbon and nitrogen metabolism in the leaf, cambial tissue, trunk wood, branches, roots, and in the soil. The lighter isotopic composition of carbon is characteristic for the leaves, trunk cambium as well as fine (<2 mm) roots. The trunk wood is characterized by the basal trend for 13C enrichment. The heavier carbon isotopic composition inversely related to metabolic activity of organs and tissues, in addition, 13С/12C ratio corresponds to the nitrogen content in the organs and tissues, indicating the metabolic control of carbon fractionation in woody plants. The isotopic composition of nitrogen in the aboveground parts of the plant (leaves, trunk cambium, wood) and in the medium and fine roots was significantly depleted in 15N (δ15N varies from 0 to–3‰), while main roots (δ15N = 0.6 ‰) and soil (δ15N = 2.4–6.7‰) were more enriched. The ratio of stable isotopes of carbon and nitrogen is an integrating index of carbon and nitrogen metabolism in plants.  相似文献   

16.
Mature field-grown kiwifruit vines (Actinidia deliciosa var.deliciosa cv. Hayward) were fertilized with 15N-labelled fertilizer(ammonium sulphate, 10 atom % 15N, 50 kgN ha-1) to investigatethe timing of uptake of fertilizer nitrogen (N) and its availabilityfor new season's growth. Treatments were applied on four occasions,representing 2, 6, 10 and 14 weeks prior to budbreak. Samplesof root, stem, cordon, fruiting cane, vacuum-extracted xylemsap, and new season's growth were collected at fortnightly intervalfrom early winter until 2 months after budbreak. Two weeks after application of each treatment, 15N equivalentto an average of 7% of the applied label was recovered in rootmaterial. Although label was taken up by roots, there was nomovement of 15N within the plant until about 1 month prior tobudbreak when it was measured in the stem and cordon. Fertilizernitrogen was not detected at the distal end of fruiting canes,and in new season's growth until 3-4 weeks after budbreak. Beforebudbreak, all nitrogen in the xylem sap was in amino forms.Nitrate appeared 4 weeks after budbreak, and although more enrichedwith 15N than the amino nitrogen, accounted for only 19% ofthe label. Eight weeks after budbreak, nitrate nitrogen accountedfor 57% of the label. There were no major treatment effects of 15N on vines in eitherspring or at harvest, although enrichments in fruit and leavesfrom the earliest treatment tended to be less at the end ofthe season than those from the later applications.Copyright1993, 1999 Academic Press Actinidia deliciosa, kiwifruit, nitrogen, 15N, nutrient uptake  相似文献   

17.
J. Tromp 《Plant and Soil》1983,71(1-3):401-413
Summary In trees, nutrient reserves built up in the previous year are of primary importance for early spring growth. Despite the relatively great importance of roots for nutrient storage, the root system should not be regarded as a special storage organ. Quantitatively, carbohydrates predominate in these reserves, but qualitatively N and other minerals are of more than minor significance. In roots carbohydrates are usually stored in insoluble form, mainly as starch; sorbitol is the predominant soluble compound in apple and peach. For nitrogen reserves, the soluble form predominates in roots, especially arginine in apple and peach, followed by asparagine. The level of reserves usually becomes maximal early in the winter. During leafing-out the reserves are drawn on until, later in the season, the supply of newly produced or absorbed nutrients exceeds the demand and replenishment occurs. The initial carbohydrate reserves do not determine the amount of new growth, whereas reserve nitrogen is of decisive importance for shoot growth vigour. Environmental factors such as light intensity and temperature affect the level of carbohydrates in roots; the concentration can be reduced by defoliation and summer pruning and increased by ample supply of nitrogen fertilizer in the autumn. The main cultural factors that influence nitrogen reserves are the amount and the time of nitrogen fertilization.  相似文献   

18.
Abstract Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale L.) are persistent weeds, the aerial portions of which do not survive in winter. However, subterranean tissues remain viable and facilitate the rapid resumption of growth in early spring. The source of nutrients for growth prior to the establishment of foliage is the roots. Carbohydrate and N reserves are accrued during late summer and autumn, respectively. Hydrolysis of fructans during late autumn occurs coincidentally with increments in sucrose, the latter providing a readily accessible C pool. Nitrate, free amino acids and soluble protein all play substantial roles in nitrogen storage. Asparagine is the predominant amino acid in the free pool during winter, followed by glutamine, ornithine, serine, aspartic acid and glutamic acid. Storage reserves remain at peak levels throughout winter and deeline prior to the resumption of growth. The patterns observed here provide evidence that N is an important currency of storage metabolism and, thus, a framework has been provided for the examination of regulation of N storage in perennial weeds.  相似文献   

19.
The relationship between crop load and the functional storageof selected macronutrients and starch was assessed to developnutrient budgets and best management fertilization practicesin orchards. Functional storage represents the amount of nutrientsand starch redistributed from perennial tree parts in supportof the spring growth flush. Functional storage was influencedby:(a)nutrient and starch accumulation prior to dormancy; and(b)nutrientand starch demand by vegetative and reproductive organs in spring.Lightly cropping (off-year) trees stored 7, 14 and 2 times asmuch N, P and K, respectively, as heavily cropping (on-year)trees. Similar to many biennial plant species, nutrients thataccumulated during the vegetative phase in off-year trees wereused to support reproductive growth during the subsequent on-year.Soil nutrient uptake contributed more to storage pools thanleaf nutrient resorption in off-year-trees, while the reversewas true in on-year trees. Net nutrient resorption from senescingleaves accounted for all of the N and P and a third of the Kstored in on-year trees. Only between 20–33% of the N,P and K stored in perennial tissues of off-year trees couldbe attributed to leaf nutrient resorption. This is the firststudy to determine the amounts of nutrients stored in the perennialparts of mature, field-grown trees and the relative contributionsof leaf nutrient resorption and soil nutrient uptake to functionalstorage in trees.Copyright 1998 Annals of Botany Company Pistacia vera, nutrient storage, biennial bearing, crop load, leaf nutrient resorption, source-sink relationships.  相似文献   

20.
Leafy spurge ( Euphorbia esula L.), a serious perennial weed of temperature range and pasture lands, has continued to colonize despite various control strategies. The persistence of this species can be attributed in part to the presence of an extensive root system containing abundant organic reserves. These components, established towards the end of the growing season, are remobilized to support early spring growth. Carbohydrates comprise the bulk of reserve material with late fall incrents in free sugars being associated with reductions in starch content. Nitrogenous components undergo significant seasonal fluxes, with free amino acids and soluble proteins reaching maxima during late fall. Asparagine, glutamic acid, serine, ornithine, proline, arginine and aspartic acid all contribute significantly to the storage of nitrogen. Changes in nitrate content are associated with the overwintering process. These observations are indicative of the role that nitrogen plays in the overwintering strategy and regenerative capacity of leafy spurge roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号