首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we describe the role of NAD(+) in the deacetylation reaction catalyzed by the SIR2 family of enzymes. We first show that the products of the reaction detected by HPLC analysis are ADP-ribose, nicotinamide, and a deacetylated peptide substrate. These products are in a 1:1:1 molar ratio, indicating that deacetylation involves the hydrolysis of one NAD(+) to ADP-ribose and nicotinamide for each acetyl group removed. Three results suggest that deacetylation requires an enzyme-ADP-ribose intermediate. First, the enzyme can promote an NAD(+) if nicotinamide exchange reaction that depends on an acetylated substrate. Second, a non-hydrolyzable NAD(+) analog is a competitive inhibitor of the enzyme, and, third, nicotinamide shows product inhibition of deacetylase activity.  相似文献   

2.
We describe a microplate-based assay for NAD-dependent Class III histone deacetylases (also known as SIRTs) that measures the enzyme-catalyzed release of nicotinamide from radiolabeled NAD, using a boronic acid resin to selectively capture the NAD. This method avoids the need for fluorogenic or radiolabeled peptides or separation of the reaction products using solvent extraction. The protocol reported here is rapid and uses commercially available materials. The use of a simple microplate filtration device allows for the simultaneous processing of 96 samples, facilitating enzyme kinetic analyses and inhibition studies. Furthermore, monitoring nicotinamide release rather than peptide deacetylation obviates the need for chemical modification of protein and peptide substrates. This assay is applicable to SIRTs and other enzymes that cleave nicotinamide from NAD.  相似文献   

3.
Borra MT  Langer MR  Slama JT  Denu JM 《Biochemistry》2004,43(30):9877-9887
The Silent information regulator 2 (Sir2) family of enzymes consists of NAD(+)-dependent histone/protein deacetylases that tightly couple the hydrolysis of NAD(+) and the deacetylation of an acetylated substrate to form nicotinamide, the deacetylated product, and the novel metabolite O-acetyl-ADP-ribose (OAADPR). In this paper, we analyzed the substrate specificity of the yeast Sir2 (ySir2), the yeast HST2, and the human SIRT2 homologues toward various monoacetylated histone H3 and H4 peptides, determined the basic kinetic mechanism, and resolved individual chemical steps of the Sir2 reaction. Using steady-state kinetic analysis, we have shown that ySir2, HST2, and SIRT2 exhibit varying catalytic efficiencies and display a preference among the monoacetylated peptide substrates. Bisubstrate kinetic analysis indicates that Sir2 enzymes follow a sequential mechanism, where both the acetylated substrate and NAD(+) must bind to form a ternary complex, prior to any catalytic step. Using rapid-kinetic analysis, we have shown that after ternary complex formation, nicotinamide cleavage occurs first, followed by the transfer of the acetyl group from the donor substrate to the ADP-ribose portion of NAD(+) to form OAADPr and the deacetylated product. Product and dead-end inhibition analyses revealed that nicotinamide is the first product released followed by random release of OAADPr and the deacetylated product.  相似文献   

4.
Histone deacetylases catalyze the hydrolysis of an acetyl group from post-translationally modified acetyl-lysine residues in a wide variety of essential cellular proteins, including histones. Because these lysine modifications can alter the activity and properties of affected proteins, aberrant acetylation/deacetylation may contribute to disease states. Many fundamental questions regarding the substrate specificity and regulation of these enzymes have yet to be answered. Here, we optimize an enzyme-coupled assay to measure low micromolar concentrations of acetate, coupling acetate production to the formation of NADH (nicotinamide adenine dinucleotide, reduced form) that is measured by changes in either absorbance or fluorescence. Using this assay, we measured the steady-state kinetics of peptides representing the H4 histone tail and demonstrate that a C-terminally conjugated methylcoumarin enhances the catalytic efficiency of deacetylation catalyzed by cobalt(II)-bound histone deacetylase 8 [Co(II)–HDAC8] compared with peptide substrates containing a C-terminal carboxylate, amide, and tryptophan by 50-, 2.8-, and 2.3-fold, respectively. This assay can be adapted for a high-throughput screening format to identify HDAC substrates and inhibitors.  相似文献   

5.
Sirtuin enzymes comprise a unique class of NAD(+)-dependent protein deacetylases. Although structures of many sirtuin complexes have been determined, structural resolution of intermediate chemical steps are needed to understand the deacetylation mechanism. We report crystal structures of the bacterial sirtuin, Sir2Tm, in complex with an S-alkylamidate intermediate, analogous to the naturally occurring O-alkylamidate intermediate, and a Sir2Tm ternary complex containing a dissociated NAD(+) analog and acetylated peptide. The structures and biochemical studies reveal critical roles for the invariant active site histidine in positioning the reaction intermediate, and for a conserved phenylalanine residue in shielding reaction intermediates from base exchange with nicotinamide. The new structural and biochemical studies provide key mechanistic insight into intermediate steps of the Sir2 deacetylation reaction.  相似文献   

6.
7.
A A Sauve  I Celic  J Avalos  H Deng  J D Boeke  V L Schramm 《Biochemistry》2001,40(51):15456-15463
The Sir2 enzyme family is responsible for a newly classified chemical reaction, NAD(+)-dependent protein deacetylation. New peptide substrates, the reaction mechanism, and the products of the acetyl transfer to NAD(+) are described for SIR2. The final products of SIR2 reactions are the deacetylated peptide and the 2' and 3' regioisomers of O-acetyl ADP ribose (AADPR), formed through an alpha-1'-acetyl ADP ribose intermediate and intramolecular transesterification reactions (2' --> 3'). The regioisomers, their anomeric forms, the interconversion rates, and the reaction equilibria were characterized by NMR, HPLC, 18O exchange, and MS methods. The mechanism of acetyl transfer to NAD(+) includes (1) ADP ribosylation of the peptide acyl oxygen to form a high-energy O-alkyl amidate intermediate, (2) attack of the 2'-OH group on the amidate to form a 1',2'-acyloxonium species, (3) hydrolysis to 2'-AADPR by the attack of water on the carbonyl carbon, and (4) an SIR2-independent transesterification equilibrating the 2'- and 3'-AADPRs. This mechanism is unprecedented in ADP-ribosyl transferase enzymology. The 2'- and 3'-AADPR products are candidate molecules for SIR2-initiated signaling pathways.  相似文献   

8.
Silent information regulator 2 (Sir2) family of enzymes has been implicated in many cellular processes that include histone deacetylation, gene silencing, chromosomal stability, and aging. Yeast Sir2 and several homologues have been shown to be NAD(+)-dependent histone/protein deacetylases. Previously, it was demonstrated that the yeast enzymes catalyze a unique reaction mechanism in which the cleavage of NAD(+) and the deacetylation of substrate are coupled with the formation of O-acetyl-ADP-ribose, a novel metabolite. We demonstrate that the production of O-acetyl-ADP-ribose is evolutionarily conserved among Sir2-like enzymes from yeast, Drosophila, and human. Also, endogenous yeast Sir2 complex from telomeres was shown to generate O-acetyl-ADP-ribose. By using a quantitative microinjection assay to examine the possible biological function(s) of this newly discovered metabolite, we demonstrate that O-acetyl-ADP-ribose causes a delay/block in oocyte maturation and results in a delay/block in embryo cell division in blastomeres. This effect was mimicked by injection of low nanomolar levels of active enzyme but not with a catalytically impaired mutant, indicating that the enzymatic activity is essential for the observed effects. In cell-free oocyte extracts, we demonstrate the existence of cellular enzymes that can efficiently utilize O-acetyl-ADP-ribose.  相似文献   

9.
Reversible protein acetylation is a ubiquitous means for the rapid control of diverse cellular processes. Acetyltransferase enzymes transfer the acetyl group from acetyl-CoA to lysine residues, while deacetylase enzymes catalyze removal of the acetyl group by hydrolysis or by an NAD(+)-dependent reaction. Propionyl-coenzyme A (CoA), like acetyl-CoA, is a high energy product of fatty acid metabolism and is produced through a similar chemical reaction. Because acetyl-CoA is the donor molecule for protein acetylation, we investigated whether proteins can be propionylated in vivo, using propionyl-CoA as the donor molecule. We report that the Salmonella enterica propionyl-CoA synthetase enzyme PrpE is propionylated in vivo at lysine 592; propionylation inactivates PrpE. The propionyl-lysine modification is introduced by bacterial Gcn-5-related N-acetyltransferase enzymes and can be removed by bacterial and human Sir2 enzymes (sirtuins). Like the sirtuin deacetylation reaction, sirtuin-catalyzed depropionylation is NAD(+)-dependent and produces a byproduct, O-propionyl ADP-ribose, analogous to the O-acetyl ADP-ribose sirtuin product of deacetylation. Only a subset of the human sirtuins with deacetylase activity could also depropionylate substrate. The regulation of cellular propionyl-CoA by propionylation of PrpE parallels regulation of acetyl-CoA by acetylation of acetyl-CoA synthetase and raises the possibility that propionylation may serve as a regulatory modification in higher organisms.  相似文献   

10.
Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases.  相似文献   

11.
The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose) polymerase (PARP), an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months) compared to young (i.e. 3 month old) rats. These changes in [NAD(H)] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine) formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX) was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.  相似文献   

12.
Sauve AA  Schramm VL 《Biochemistry》2003,42(31):9249-9256
Life span regulation and inhibition of gene silencing in yeast have been linked to nicotinamide effects on Sir2 enzymes. The Sir2 enzymes are NAD(+)-dependent protein deacetylases that influence gene expression by forming deacetylated proteins, nicotinamide and 2'-O-acetyl-ADPR. Nicotinamide is a base-exchange substrate as well as a biologically effective inhibitor. Characterization of the base-exchange reaction reveals that nicotinamide regulates sirtuins by switching between deacetylation and base exchange. Nicotinamide switching is quantitated for the Sir2s from Archeaglobus fulgidus (Sir2Af2), Saccharomyces cerevisiae (Sir2p), and mouse (Sir2alpha). Inhibition of deacetylation was most effective for mouse Sir2 alpha, suggesting species-dependent development of this regulatory mechanism. The Sir2s are proposed to form a relatively stable covalent intermediate between ADPR and the acetyl oxygen of the acetyllysine-protein substrate. During the lifetime of this intermediate, nicotinamide occupation of the catalytic site determines the fate of the covalent complex. Saturation of the nicotinamide site for mouse, yeast, and bacterial Sir2s causes 95, 65, and 21% of the intermediate, respectively, to return to acetylated protein. The fraction of the intermediate committed to deacetylation results from competition between the nicotinamide and the neighboring 2'-hydroxyl group at the opposite stereochemical face. Nicotinamide switching supports the previously proposed Sir2 catalytic mechanism and the existence of a 1'-O-peptidyl-ADPR.Sir2 intermediate. These findings suggest a strategy for increasing Sir2 enzyme catalytic activity in vivo by inhibition of chemical exchange but not deacetylation.  相似文献   

13.
Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context.  相似文献   

14.
The regulation of protein function is often achieved through post-translational modifications including phosphorylation, methylation, ubiquitination, and acetylation. The role of acetylation has been most extensively studied in the context of histones, but it is becoming increasingly evident that this modification now includes other proteins. The Sir2 family of NAD-dependent deacetylases was initially recognized as mediating gene silencing through histone deacetylation, but several family members display non-nuclear sub-cellular localization and deacetylate non-histone protein substrates. Although many structural and enzymatic studies of Sir2 proteins have been reported, how substrate recognition is achieved by this family of enzymes is unknown. Here we use in vitro deacetylase assays and a variety of potential substrates to examine the substrate specificity of yeast homologue Hst2. We show that Hst2 is specific for acetyl-lysine within proteins; it does not deacetylate small polycations such as acetyl-spermine or acetylated amino ter-mini of proteins. Furthermore we have found that Hst2 displays conformational rather than sequence specificity, preferentially deacetylating acetyl-lysine within unstructured regions of proteins. Our results suggest that this conformational requirement may be a general feature for substrate recognition in the Sir2 family.  相似文献   

15.
Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2'-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Br?nsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including beta-2'-deoxy-2'-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2'-OH ribose. The observed enzyme-catalyzed formation of a labile 1'-acetylated-ADP-fluororibose intermediate using beta-2'-deoxy-2'-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1' ribose to form an initial iminium adduct.  相似文献   

16.
Grubisha O  Smith BC  Denu JM 《The FEBS journal》2005,272(18):4607-4616
The Sir2 family of histone/protein deacetylases (sirtuins) is comprised of homologues found across all kingdoms of life. These enzymes catalyse a unique reaction in which NAD+ and acetylated substrate are converted into deacetylated product, nicotinamide, and a novel metabolite O-acetyl ADP-ribose. Although the catalytic mechanism is well conserved across Sir2 family members, sirtuins display differential specificity toward acetylated substrates, which translates into an expanding range of physiological functions. These roles include control of gene expression, cell cycle regulation, apoptosis, metabolism and ageing. The dependence of sirtuin activity on NAD+ has spearheaded investigations into how these enzymes respond to metabolic signals, such as caloric restriction. In addition, NAD+ metabolites and NAD+ salvage pathway enzymes regulate sirtuin activity, supporting a link between deacetylation of target proteins and metabolic pathways. Apart from physiological regulators, forward chemical genetics and high-throughput activity screening has been used to identify sirtuin inhibitors and activators. This review focuses on small molecule regulators that control the activity and functions of this unusual family of protein deacetylases.  相似文献   

17.
The transient receptor potential melastatin-related channel 2 (TRPM2) is a nonselective cation channel, whose prolonged activation by oxidative and nitrative agents leads to cell death. Here, we show that the drug puromycin selectively targets TRPM2-expressing cells, leading to cell death. Our data suggest that the silent information regulator 2 (Sir2 or sirtuin) family of enzymes mediates this susceptibility to cell death. Sirtuins are protein deacetylases that regulate gene expression, apoptosis, metabolism, and aging. These NAD+-dependent enzymes catalyze a reaction in which the acetyl group from substrate is transferred to the ADP-ribose portion of NAD+ to form deacetylated product, nicotinamide, and the metabolite OAADPr, whose functions remain elusive. Using cell-based assays and RNA interference, we show that puromycin-induced cell death is greatly diminished by nicotinamide (a potent sirtuin inhibitor), and by decreased expression of sirtuins SIRT2 and SIRT3. Furthermore, we demonstrate using channel current recordings and binding assays that OAADPr directly binds to the cytoplasmic domain of TRPM2 and activates the TRPM2 channel. ADP-ribose binds TRPM2 with similarly affinity, whereas NAD+ displays almost negligible binding. These studies provide the first evidence for the potential role of sirtuin-generated OAADPr in TRPM2 channel gating.  相似文献   

18.
French JB  Cen Y  Sauve AA 《Biochemistry》2008,47(38):10227-10239
Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is undetermined. Herein we characterize a Plasmodium falciparum sirtuin that catalyzes deacetylation of histone peptide sequences. Interestingly, the enzyme can also hydrolyze NAD (+). Two mechanisms of hydrolysis were identified and characterized. One is independent of acetyllysine substrate and produces alpha-stereochemistry as established by reaction of methanol which forms alpha-1- O-methyl-ADPR. This reaction is insensitive to nicotinamide inhibition. The second solvolytic mechanism is dependent on acetylated peptide and is proposed to involve the imidate to generate beta-stereochemistry. Stereochemistry was established by isolation of beta-1- O-methyl-ADPR when methanol was added as a cosolvent. This solvolytic reaction was inhibited by nicotinamide, suggesting that nicotinamide and solvent compete for the imidate. These findings establish new reactions of wildtype sirtuins and suggest possible mechanisms for ADP-ribosylation to proteins. These findings also illustrate the potential utility of nicotinamide as a probe for mechanisms of sirtuin-catalyzed ADP-ribosyl transfer.  相似文献   

19.
Smith BC  Denu JM 《Biochemistry》2007,46(50):14478-14486
Sir2 protein deacetylases (or sirtuins) catalyze NAD+-dependent conversion of epsilon-amino-acetylated lysine residues to deacetylated lysine, nicotinamide, and 2'-O-acetyl-ADP-ribose. Small-molecule modulation of sirtuin activity might treat age-associated diseases, such as type II diabetes, obesity, and neurodegenerative disorders. Here, we have evaluated the mechanisms of sirtuin inhibition of histone peptides containing thioacetyl or mono-, di-, and trifluoroacetyl groups at the epsilon-amino of lysine. Although all substituted peptides yielded inhibition of the deacetylation reaction, the thioacetyl-lysine peptide exhibited exceptionally potent inhibition of sirtuins Sirt1, Sirt2, Sirt3, and Hst2. Using Hst2 as a representative sirtuin, the trifluoroacetyl-lysine peptide displayed competitive inhibition with acetyl-lysine substrate and yielded an inhibition constant (Kis) of 4.8 microM, similar to its Kd value of 3.3 microM. In contrast, inhibition by thioacetyl-lysine peptide yielded an inhibition constant (Kis) of 0.017 microM, 280-fold lower than its Kd value of 4.7 microM. Examination of thioacetyl-lysine peptide as an alternative sirtuin substrate revealed conserved production of deacetylated peptide and 1'-SH-2'-O-acetyl-ADP-ribose. Pre-steady-state and steady-state analysis of the thioacetyl-lysine peptide showed rapid nicotinamide formation (4.5 s-1) but slow overall turnover (0.0024 s-1), indicating that the reaction stalled at an intermediate after nicotinamide formation. Mass spectral analysis yielded a novel species (m/z 1754.3) that is consistent with an ADP-ribose-peptidyl adduct (1'-S-alkylamidate) as the stalled intermediate. Additional experiments involving solvent isotope effects, general base mutational analysis, and density functional calculations are consistent with impaired 2'-hydroxyl attack on the ADP-ribose-peptidyl intermediate. These results have implications for the development of mechanism-based inhibitors of Sir2 deacetylases.  相似文献   

20.
Emerging proteomic evidence suggests that acetylation of metabolic enzymes is a prevalent post-translational modification. In a few recent reports, acetylation down-regulated activity of specific enzymes in fatty acid oxidation, urea cycle, electron transport, and anti-oxidant pathways. Here, we reveal that the glycolytic enzyme phosphoglycerate mutase-1 (PGAM1) is negatively regulated by Sirt1, a member of the NAD(+)-dependent protein deacetylases. Acetylated PGAM1 displays enhanced activity, although Sirt1-mediated deacetylation reduces activity. Acetylation sites mapped to the C-terminal "cap," a region previously known to affect catalytic efficiency. Overexpression of a constitutively active variant (acetylated mimic) of PGAM1 stimulated flux through glycolysis. Under glucose restriction, Sirt1 levels dramatically increased, leading to PGAM1 deacetylation and attenuated activity. Previously, Sirt1 has been implicated in the adaptation from glucose to fat burning. This study (i) demonstrates that protein acetylation can stimulate metabolic enzymes, (ii) provides biochemical evidence that glycolysis is modulated by reversible acetylation, and (iii) demonstrates that PGAM1 deacetylation and activity are directly controlled by Sirt1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号