首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Growth of Halobacterium halobium under illumination with limiting aeration induces bacteriorhodopsin formation and renders the cells capable of photophosphorylation. Cells depleted of endogenous reserves by a starvation treatment were used to investigate the means by which energy is coupled to the active transport of [14C]proline, -leucine, and -histidine. Proline was readily accumulated by irradiated cells under anaerobiosis even when the photophosphorylation was abolished by the adenosine triphosphatase inhibitor N,N'-dicyclohexylcarbodimiide (DCCD). The uptake of proline in the dark was limited except when the cells were allowed to accumulate adenosine 5'-triphosphate (ATP) by prior light exposure or by the oxidation of glycerol. DCCD inhibited this dark uptake. These findings essentially support Mitchell's chemiosmotic theory of active transport. The driving force is apparently the proton-motive force developed when protons are extruded from irradiated bacteriorhodopsin or by the dydrolysis of ATP by membrane adenosine triphosphatase. Carbonylcyanide m-chlorophenylhydrazone (CCCP), a proton permeant known to abolish membrane potential, was a strong inhibitor of proline uptake. Leucine transport was also apparently driven by proton-motive force, although its kinetic properties differed from the proline system. Histidine transport is apparently not a chemiosmotic system. Dark- or light-exposed cells show comparable initial rats of histidine uptake, and these processes were only partially inhibited by DCCD or CCCP. The histidine system apparently does not utilize ATP per se since comparable rates of uptake were exhibited by cells of differing intracellular ATP levels. Irradiated cells did effect a greater total accumulation of histidine than dark-exposed cells. These findings suggest that ATP is needed for sustained transport.  相似文献   

2.
The uptake of proline and glutamine by cytochrome-deficient cells of Escherichia coli SASX76 grown aerobically on glucose or anaerobically on pyruvate was stimulated by these two substrates. Pyruvate could not stimulate transport in the glucose-grown cells. Uptake of these amino acids energized by glucose was inhibited by inhibitors of the Ca2+, Mg2+-stimulated ATPase such as DCCD, pyrophosphate, and azide, and by the uncouplers CCCP and 2,4-dinitrophenol. Glycerol (or glycerol 3-phosphate) in the presence of fumarate stimulated the transport of proline and glutamine under anaerobic conditions in cytochrome-deficient cells but not in membrane vesicles prepared from these cells although glycerol 3-phosphate-fumarate oxidoreductase activity could be demonstrated in the vesicle preparation. In contrast, in vesicles prepared from cytochrome-containing cells of E. coli SASX76 amino acid transport was energized under anaerobic conditions by this system. Inhibitors of the Ca2+, Mg2+-activated ATPase and uncoupling agents inhibited the uptake of proline and glutamine in cytochrome-deficient cells dependent on the glycerol-fumarate oxidoreductase system. Ferricyanide could replace fumarate as an electron acceptor to permit transport of phenylalanine in cytochrome-deficient or cytochrome-containing cells under anaerobic conditions. It is concluded that in cytochrome-deficient cells using glucose, pyruvate, or glycerol in the presence of fumarate, transport of both proline and glutamine under under anaerobic conditions is energized by ATP through the Ca2+, Mg2+-activated ATPase. In cytochrome-containing cells under anaerobic conditions electron transfer between glycerol and fumarate can also drive transport of these amino acids.  相似文献   

3.
A.P. Singh  P.D. Bragg 《BBA》1976,423(3):450-461
The uptake of proline and glutamine by cytochrome-deficient cells of Escherichia coli SASX76 grown aerobically on glucose or anaerobically on pyruvate was stimulated by these two substrates. Pyruvate could not stimulate transport in the glucose-grown cells. Uptake of these amino acids energized by glucose was inhibited by inhibitors of the Ca2+, Mg2+-stimulated ATPase such as DCCD, pyrophosphate, and azide, and by the uncouplers CCCP and 2,4-dinitrophenol. Glycerol (or glycerol 3-phosphate) in the presence of fumarate stimulated the transport of proline and glutamine under anaerobic conditions in cytochrome-deficient cells but not in membrane vesicles prepared from these cells although glycerol 3-phosphate-fumarate oxidoreductase activity could be demonstrated in the vesicle preparation. In contrast, in vesicles prepared from cytochrome-containing cells of E. coli SASX76 amino acid transport was energized under anaerobic conditions by this system. Inhibitors of the Ca2+, Mg2+-activated ATPase and uncoupling agents inhibited the uptake of proline and glutamine in cytochrome-deficient cells dependent on the glycerol-fumarate oxidoreductase system. Ferricyanide could replace fumarate as an electron acceptor to permit transport of phenylalanine in cytochrome-deficient or cytochrome- containing cells under anaerobic conditions. It is concluded that in cytochrome-deficient cells using glucose, pyruvate, or glycerol in the presence of fumarate, transport of both proline and glutamine under anaerobic conditions is energized by ATP through the Ca2+, Mg2+-activated ATPase. In cytochrome-containing cells under anaerobic conditions electron transfer between glycerol and fumarate can also drive transport of these amino acids.  相似文献   

4.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

5.
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.  相似文献   

6.
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibited dark re-reduction of cytochrome c2 and reduction of b-type cytochrome, both of which are closely associated with electron transfer involving a cytochrome b-c2 oxidoreductase, after a single-turnover flash excitation in the chromatophore membranes from a photosynthetic bacterium, Rhodopseudomonas sphaeroides. Rapid proton uptakes (HI+, HII+) and the formation of the membrane potential registered by carotenoid bandshift phase III were also inhibited by DCCD. The electron transfer was inhibited in the presence of either valinomycin or carbonylcyanide-m-chlorophenylhydrazone (CCCP). These results indicated that DCCD inhibited the electron transfer involving the cytochrome b-c2 oxidoreductase in the bacterium. The inhibition was irreversible. A hydrophilic carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC), did not affect the above-mentioned reactions. Thus, DCCD may interact with the hydrophobic region(s) in the chromatophore membranes from photosynthetic bacteria resulting in the inhibition(s) of the photosynthetic cyclic electron transfer.  相似文献   

7.
N,N′-dicyclohexylcarbodiimide (DCCD) was found to uncouple phosphorylation from oxidation with succinate and NAD+-linked substrates in the system from Mycobacterium phlei. However, in contrast to the effect of this agent in mammalian mitochondria, DCCD was found to stimulate oxidation with succinate as an electron donor and to inhibit the oxidation of NAD+-linked substrates. Furthermore, in the M. phlei system DCCD was found to inhibit the membrane bound latent ATP-ase but had no effect on this activity when the latent ATPase was removed from the membrane vesicles. Reconstitution with the fraction containing latent ATPase activity and the membrane vesicles resulted in inhibition of latent ATPase by DCCD. Studies of the effect of DCCD on the resolved system indicated that DCCD may be associated with membrane vesicles or causes secondary changes in conformation of membrane vesicles. Although DCCD inhibited membrane bound ATPase it did not prevent the addition of the solubilized ATPase to the membrane vesicles. DCCD was found to have no effect on purified succinic dehydrogenase activity but stimulated this activity in the electron transport particles.  相似文献   

8.
Ca2+ transport across mammary-gland Golgi membranes was measured after centrifugation of the membrane vesicles through silicone oil. In the presence of 2.3 microM free Ca2+ the vesicles accumulated 5.8 nmol of Ca2+/mg of protein without added ATP, and this uptake was complete within 0.5 min. In the presence of 1 mM-ATP, Ca2+ was accumulated at a linear rate for 10 min after the precipitation of intravesicular Ca2+ with 10 mM-potassium oxalate. ATP-dependent Ca2+ uptake exhibited a Km of 0.14 microM for Ca2+ and a Vmax. of 3.1 nmol of Ca2+/min per mg of protein. Ca2+-dependent ATP hydrolysis exhibited a Km of 0.16 microM for Ca2+ and a Vmax. of 10.1 nmol of Pi/min per mg of protein. The stoichiometry between ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase varied between 0.3 and 0.7 over the range 0.03-8.6 microM-Ca2+. Both Ca2+ uptake and Ca2+-stimulated ATPase were strongly inhibited by orthovanadate, which suggests that the major mechanism by which Golgi vesicles accumulate Ca2+ is through the action of the Ca2+-stimulated ATPase. However, Ca2+ uptake was also decreased by the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone), indicating that it may occur by other mechanisms too. The effect of CCCP may be related to the existence of transmembrane pH gradients (delta pH) in these vesicles: the addition of 30 microM-CCCP reduced delta pH from a control value of 1.06 to 0.73 pH unit. Golgi vesicles also possess a Ca2+-efflux pathway which operated at an initial rate of 0.5-0.57 nmol/min per mg of protein.  相似文献   

9.
大豆下胚轴质膜H+-ATPase质子转运的测定   总被引:4,自引:0,他引:4  
以大豆下胚轴为材料,采用改进的匀浆介质,通过两相法制得具有质子转运活力的高纯度质膜微囊.并且发现冻融处理可以促进质膜微囊的翻转而提高荧光猝灭效率.质子载体和质子转运特性分析表明,由Mg2+-ATP引发的荧光猝灭可以被质子载体CCCP恢复,并被质子通道抑制剂DCCD抑制;并且发现质膜H-ATPase专一抑制剂钒酸钠可以完全抑制荧光猝灭,同时发现荧光猝灭依赖于Mg2+,并受K刺激,最适pH为6.5.以上证明所测荧光猝灭是由质膜H-ATPase所进行的质子转运引起的.结果同时表明,维持H-ATPase合适构象和提高质膜微囊封闭性是制备具有H转运活力质膜微囊的两个关键因素.  相似文献   

10.
The presence of dicyclohexylcarbodiimide (DCCD) inhibited the activities of vanadate-sensitive H+ -ATPase in both native and reconstituted plasma membrane of maize (Zea mays L. cv. WF9 × Mo 17) roots. Concentration dependence of DCCD inhibition on adenosine triphosphate (ATP) hydrolysis of native plasma membrane vesicles suggested that the molar ratio of effective DCCD binding to ATPase was close to 1. The DCCD inhibition of ATP hydrolysis could be slightly reduced by the addition of ATP, Mg:ATP, adenosine monophosphate (AMP), Mg:AMP and adenosine diphosphate (ADP). More hydrophilic derivatives of DCCD such as l-ethyl-N?-3-trimethyl ammonium carbodiimide (EDAC) or 1-ethyl-3-3-dimethyl-aminopropyl carbodiimide (EDC) gave no inhibition, indicating that the effective DCCD binding site was located in a hydrophobic region of the protein. The proton transport activity of reconstituted plasma membrane at a temperature below 20°C or above 25°C was much sensitive to DCCD treatment. Build-up of the proton gradient was analyzed according to a kinetic model, which showed that proton leakage across de-energized reconstituted plasma membranes was not affected by DCCD, but was sensitive to the method employed to quench ATP hydrolysis. Reconstituted plasma membrane vesicles treated with DCCD exhibited a differential inhibition of the coupled H+-transport and ATP hydrolysis. The presence of 50 μM DCCD nearly abolished transport but inhibited less than 50% of ATP hydrolysis. The above results suggest that the link between proton transport and vanadate-sensitive ATP hydrolysis is indirect in nature.  相似文献   

11.
CO(2) entry into Synechococcus sp. PCC7942 cells was drastically inhibited by the water channel blocker p-chloromercuriphenylsulfonic acid suggesting that CO(2) uptake is, for the most part, passive via aquaporins with subsequent energy-dependent conversion to HCO3(-). Dependence of CO(2) uptake on photosynthetic electron transport via photosystem I (PSI) was confirmed by experiments with electron transport inhibitors, electron donors and acceptors, and a mutant lacking PSI activity. CO(2) uptake was drastically inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ammonia but substantially less so by the inhibitors of ATP formation arsenate and N, N,-dicyclohexylcarbodiimide (DCCD). Thus a DeltamuH(+) generated by photosynthetic PSI electron transport apparently serves as the direct source of energy for CO(2) uptake. Under low light intensity, the rate of CO(2) uptake by a high-CO(2)-requiring mutant of Synechococcus sp. PCC7942, at a CO(2) concentration below its threshold for CO(2) fixation, was higher than that of the wild type. At saturating light intensity, net CO(2) uptake was similar in the wild type and in the mutant IL-3 suggesting common limitation by the rate of conversion of CO(2) to HCO3(-). These findings are consistent with a model postulating that electron transport-dependent formation of alkaline domains on the thylakoid membrane energizes intracellular conversion of CO(2) to HCO3(-).  相似文献   

12.
Membrane vesicles obtained from Acholeplasma laidlawii accumulate glucose as well as maltose and fructose against their concentration gradient in the absence of exogenous energy sources. Glucose uptake by membrane vesicles is inhibited by anaerobiosis and by electron transfer inhibitors, such as rotenone and amytal, but not by 2-heptyl-4-hydroxyquinoline N-oxide, antimycin A, cyanide and azide. Rotenone, cyanide and amytal also produce a rapid efflux of glucose from the membrane vesicles. Arsenate, oligomycin and N,N'-dicyclohexylcarbodimide do not inhibit glucose transport. Transport of glucose is markedly inhibited by proton conductors such as CCCP and pentachlorophenol. It is concluded that glucose transport can be driven by a high-energy state of the membrane or by the membrane potential.  相似文献   

13.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and delta psi generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the delta psi generation. Delta psi was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on delta psi. Na+ was required to couple NADH oxidation with delta psi generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed delta pNa, i.e., addition of NaCl to the K+ -loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed delta pH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that delta mu Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+ -motor responsible for motility of V. alginolyticus.  相似文献   

14.
The mechanism of 3-O-methyl-d-glucose transport through the plasmalemma has been investigated in protoplasts isolated from the mesophyll of Pisum sativum L. var. Dan.Analysis of the fluxes after 50 minutes of uptake showed that the gradual decrease in slope of the net uptake curve with time was not due to any decline in uptake capacity; it represented the approach to flux equilibrium of a small compartment of the protoplast, probably the cytoplasm.The energy of activation for initial flux into this compartment was 20 kilocalories per mole between 17 and 27 C. Very high discrimination was shown with regard to sugar isomers. Light strongly promoted flux (by a factor of 2.5 in the case of methyl glucose). Initial flux showed sharply contrasting inhibitor sensitivity in the light and the dark. Light uptake was sensitive to the proton conductor carbonyl cyanide m-chlorophenylhydrazone (CCCP), but stable for at least the first 10 minutes to the ATPase inhibitors quercetin, rutin, and diethylstilbestrol, as well as to arsenate. Dark uptake, on the other hand, was stable to CCCP but was immediately depressed by quercetin, rutin, diethylstilbestrol, and arsenate.Protoplasts which received a light pretreatment before incubation in the dark took up methyl glucose at the accelerated light rate for the first 7 minutes. Moreover, the light pretreatment sensitized subsequent initial dark uptake to CCCP, and conferred on it the stability to ATPase inhibitors and arsenate characteristic of light uptake. After about 7 minutes the characteristic inhibitor responses of dark uptake were resumed.It is proposed that more than one mode of energy-coupling for sugar transport may operate in these protoplasts.  相似文献   

15.
J Shioi  S Naito    T Ueda 《The Biochemical journal》1989,258(2):499-504
Measurements have been made of the ATP-dependent membrane potential (delta psi) and pH gradient (delta pH) across the membranes of the synaptic vesicles purified from bovine cerebral cortex, using the voltage-sensitive dye bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxanol and the delta pH-sensitive fluorescent dye 9-aminoacridine respectively. A pre-existing small delta pH (inside acidic) was detected in the synaptic vesicles, but no additional significant contribution by MgATP to delta pH was observed. In contrast, delta psi (inside positive) increased substantially upon addition of MgATP. This ATP-dependent delta psi was reduced by thiocyanate anion (SCN-), a delta psi dissipator, or carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a protonmotive-force dissipator. Correspondingly, a substantially larger glutamate uptake occurred in the presence of MgATP, which was inhibited by SCN- and FCCP. A nonhydrolysable analogue of ATP, adenosine 5'-[beta gamma-methylene]triphosphate, did not substitute for ATP in either delta psi generation or glutamate uptake. The results support the hypothesis that a H+-pumping ATPase generates a protonmotive force in the synaptic vesicles at the expense of ATP hydrolysis, and the protonmotive force thus formed provides a driving force for the vesicular glutamate uptake. The delta psi generation by ATP hydrolysis was not affected by orthovanadate, ouabain or oligomycin, but was inhibited by N-ethylmaleimide, quercetin, trimethyltin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid. These results indicate that the H+-pumping ATPase in the synaptic vesicle is similar to that in the chromaffin granule, platelet granule and lysosome.  相似文献   

16.
Anacystis nidulans (Richt.) Drouet & Daily (UTEX 625), grown in batch culture with 0.5% CO2 in air, was supplied with chloride labelled with 36Cl in light and dark. Uptake in light was stimulated relative to uptake in darkness. A single transport system for Cl? with an apparent Km for Cl? of 0.14 mM was identified. Chloride in the cells reached a maximum value after 30–50 min at 25 C. At this point the internal Cl? concentration was calculated to be 60-fold the external (0.1 mM) in light and 37-fold in darkness. DCMU (3-[3,4-dichlorophenyl]–1, 1-dime-thylurea), at concentrations which abolished photosynthetic O2 evolution did not inhibit Cl? uptake in light. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), at uncoupling concentrations for photosynthesis and dark respiration, strongly inhibited Cl? uptake in light and darkness. N,N'-dicyclohexyl carbodiimide (DCCD), an energy transfer inhibitor, inhibited light Cl? uptake more slowly than photosynthesis but had no effect on dark Cl? uptake. It is concluded that Cl? uptake in A. nidulans was active in light and darkness, and that ATP was the probable energy source for transport.  相似文献   

17.
Subbacterial vesicles capable of generating delta psi during NADH oxidation were obtained. The oxidation of NADH was stimulated by Na+ and inhibited by 2-heptyl-4-oxyquinoline-N-oxide (HQNO) in submicromolar concentrations. The generation of delta psi was inhibited by HQNO in low concentrations, cyanide, gramicidine D and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) in combination with monensine. At the same time, in the absence of monensine CCCP influenced the delta psi generation in a much lesser degree. In subbacterial vesicles delta psi generation coupled with NADH oxidation necessitated Na+. Experiments with intact cells of V. alginolyticus revealed that cell motility depends on Na+, is sensitive to CCCP + monensine as well as to arsenate + HQNO, cyanide or anaerobiosis. In the absence of arsenate, the inhibition of respiration partly decreased the rate of bacterial movement. In the presence of HQNO and arsenate, NaCl addition to K+-loaded cells led to the monensine preventing restoration of the cell motility during a few minutes. However, no stimulating effect was observed in the case of artificial delta pH formation as a result of acidification of the medium (from pH 8.6 to pH 6.5). The experimental results suggest that delta mu Na+ generated by the respiratory chain and by the arsenate-sensitive enzymatic system (presumably, glycolysis and Na+-ATPase) can be utilized by the Na+-driven molecular motor responsible for the motility of V. alginolyticus cells.  相似文献   

18.
Desulfomonile tiedjei (strain DCB-1) was previously shown to conserve energy for growth from reductive dechlorination of 3-chlorobenzoate coupled to formate oxidation. We tested the hypothesis that a chemiosmotic mechanism couples reductive dechlorination and ATP synthesis in D. tiedjei. Dechlorination resulted in an increase in the ATP pool of cells. Uncouplers and ionophores decreased both the dechlorination rate and the ATP pool. However, at low concentrations the inhibitors had relatively greater effects on the ATP pool, and in some cases, even appeared to stimulate dechlorination. Those agents could not completely inhibit ATP synthesis while allowing dechlorination activity. The proton-driven ATPase inhibitor, N,N-dicyclohexylcarbodiimide (DCCD), had similar effects. An imposed pH gradient also resulted in an increase in the ATP pool of cells, and this increase was partially inhibited by DCCD. Addition of 3-chlorobenzoate to cell suspensions caused proton translocation by the cells. Proton translocation was stimulated by the permeant thiocyanate anion and inhibited by uncouplers. A maximum H+/3-chlorobenzoate ratio of greater than two was observed. These findings suggest that dechlorination supports formation of a proton-motive force which in turn supports ATP synthesis via a proton-driven ATPase.Abbreviations 3CB 3-chlorobenzoate - CCCP m-chlorophenyl-hydrazone - DCCD N,N-dicyclohexylcarbodiimide - DNP 2,4-dinitrophenol - P proton-motive force - PCP pentachlorophenol  相似文献   

19.
Active transport of proline remained unaffected in phospholipase A-treated electron transport particles from Mycobacterium phlei. However, the steady state level of proline was reduced 50 to 60% in phospholipase A-treated depleted electron transport particles that were devoid of membrane-bound coupling factor-latent ATPase activity. The decrease in the uptake of proline in the phospholipase A-treated depleted electron transport particles was not due to a change in the apparent K-m for proline, but it was related to the amount of phospholipid cleaved from the membranes. Restoration in the level of proline transport in phospholipase A-treated depleted electron transport particles was achieved by reconstituting these vesicles with diphosphatidylglycerol and phosphatidylethanolamine liposomes. Diphosphatidylglycerol was found to be most effective in the restoration of proline uptake. In contrast to the effect of phospholipase A treatment on proline transport, similar treatement of the electron transport particles or depleted electron transport particles failed to inhibit the active transport of either glutamine or glutamic acid. Studies with phospholipase A-treated membrane vesicles confirmed earlier findings that a proton gradient is not required for active transport of amino acids.  相似文献   

20.
Uptake of arsenate and phosphate by Streptococcus faecalis 9790 is strictly dependent on concurrent energy metabolism and essentially unidirectional. targinine supports uptake only in presence of glycerol or related substances; glycerol is not directly involved in transport but depletes the cellular orthophosphate pool and thus relieves feedback inhibition of transport. Uptake of phosphate and arsenate is stimulated by K+ and by other permeant cations. The results suggest that electroneutrality is preserved by compensatory movement of either H+ or OH minus. Ionophores and N,N'-dicyclohexylcarbodiimide, which prevent establishment of a proton motive force, block the accumulation of thiomethylgalactoside and of threonine but not that of arsenate or phosphate. We conclude that arsenate accumulation requires adenosine 5'-triphosphate but is not driven by the proton-motive force. However, conditions and reagents that lower the cytoplasmic pH do inhibit accumulation of arsenate and phosphate, suggesting that uptake depends on the capacity of the cells to maintain a neutral or alkaline cytoplasm. We therefore propose that phosphate accumulation is an electroneutral exchange for OH driven by adenosine 5'-triphosphate or by a metabolite thereof. Accumulation of aspartate and glutamate also requires adenosine 5'-triphosphate but not the proton-motive force and may involve a similar mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号