首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weight-bearing stepping, without supraspinal re-connectivity, can be attained by treadmill training in an animal whose spinal cord has been completely transected at the lower thoracic level. Repair of damaged tissue and of supraspinal connectivity/circuitry following spinal cord injury in rat can be achieved by specific cell elimination with radiation therapy of the lesion site delivered within a critical time window, 2-3 weeks postinjury. Here we examined the effects of training in the repaired spinal cord following clinical radiation therapy. Studies were performed in a severe rat spinal cord contusion injury model, one similar to fracture/crush injuries in humans; the injury was at the lower thoracic level and the training was a combined hindlimb standing and stepping protocol. Radiotherapy, in a similar manner to that reported previously, resulted in a significant level of tissue repair/preservation at the lesion site. Training in the irradiated group, as determined by limb kinematics tests, resulted in functional improvements that were significant for standing and stepping capacity, and yielded a significant direct correlation between standing and stepping performance. In contrast, the training in the unirradiated group resulted in no apparent beneficial effects, and yielded an inverse correlation between standing and stepping performance, e.g., subject with good standing showed poor stepping capacity. Further, without any training, a differential functional change was observed in the irradiated group; standing capacity was significantly inhibited while stepping showed a slight trend of improvement compared with the unirradiated group. These data suggest that following repair by radiation therapy the spinal circuitries which control posture and locomotor were modified, and that the beneficial functional modulation of these circuitries is use dependent. Further, for restoring beneficial motor function following radiotherapy, training seems to be crucial.  相似文献   

2.
Previous work in this laboratory has shown that adrenal medullary transplants into the spinal cord subarachnoid space can reduce pain sensitivity. This analgesia most likely results from the release of neuroactive substances, particularly catecholamines and opioid peptides, from the transplanted cells into the CSF of the spinal cord, since it can be attenuated or blocked by alpha-adrenergic or opiate antagonists. The purpose of the present study was to more directly measure the release of catecholamines from adrenal medullary transplants in the spinal cord CSF using a spinal superfusion technique. CSF samples from rats with 6-month-old transplants were assayed for catecholamines using HPLC with electro-chemical detection. Results indicated that norepinephrine levels were increased threefold, and epinephrine levels nearly 100-fold, in animals with adrenal medullary transplants compared with control transplanted animals. There was no apparent increase in dopamine levels. Furthermore, the increased levels of total catecholamines were correlated with decreased pain sensitivity. Results of this study indicate that adrenal medullary transplants can survive for long periods in the rat spinal CSF and continue to release high levels of catecholamines. Together, the release of catecholamines and opioid peptides from adrenal medullary transplants may provide the ideal combination for the reduction of pain.  相似文献   

3.
We investigated the involvement of tPA after SCI in rats and effect of treatment with human umbilical cord blood derived stem cells. tPA expression and activity were determined in vivo after SCI in rats and in vitro in rat embryonic spinal neurons in response to injury with staurosporine, hydrogen peroxide and glutamate. The activity and/or expression of tPA increased after SCI and reached peak levels on day 21 post-SCI. Notably, the tPA mRNA activity was upregulated by 310-fold compared to controls on day 21 post-SCI. As expected, MBP expression is minimal at the time of peak tPA activity and vice versa. Implantation of hUCB after SCI resulted in the downregulation of elevated tPA activity/expression in vivo in rats as well as in vitro in spinal neurons. Our results demonstrated the involvement of tPA in the secondary pathogenesis after SCI as well as the therapeutic potential of hUCB.  相似文献   

4.
The efficacy of spinal cord stimulators is dependent on the ability of the device to functionally activate targeted structures within the spinal cord, while avoiding activation of near-by non-targeted structures. In theory, these objectives can best be achieved by delivering electrical stimuli directly to the surface of the spinal cord. The current experiments were performed to study the influence of different stimulating electrode positions on patterns of spinal cord electrophysiological activation. A custom-designed spinal cord neurostimulator was used to investigate the effects of lead position and stimulus amplitude on cortical electrophysiological responses to spinal cord stimulation. Brain recordings were obtained from subdural grids placed in four adult sheep. We systematically varied the position of the stimulating lead relative to the spinal cord and the voltage delivered by the device at each position, and then examined how these variables influenced cortical responses. A clear relationship was observed between voltage and electrode position, and the magnitude of high gamma-band oscillations. Direct stimulation of the dorsal column contralateral to the grid required the lowest voltage to evoke brain responses to spinal cord stimulation. Given the lower voltage thresholds associated with direct stimulation of the dorsal column, and its possible impact on the therapeutic window, this intradural modality may have particular clinical advantages over standard epidural techniques now in routine use.  相似文献   

5.
Inflammatory response following spinal cord injury (SCI) is important in regulation of the repair process. Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are important donor cells for repairing SCI in different animal models. However, synergistic or complementary effects of co-transplantation of both cells for this purpose have not been extensively investigated. In the present study, we investigated the effects of co-transplantation of OECs and SCs on expression of pro- or anti-inflammatory factor and polarization of macrophages in the injured spinal cord of rats. Mixed cell suspensions containing OECs and SCs were transplanted into the injured site at 7 days after contusion at the vertebral T10 level. Compared with the DMEM, SC, or OEC group, the co-transplantation group had a more extensive distribution of the grafted cells and significantly reduced number of astrocytes, microglia/macrophage infiltration, and expression of chemokines (CCL2 and CCL3) at the injured site. The co-transplantation group also significantly increased arginase+/CD206+ macrophages (IL-4) and decreased iNOS+/CD16/32+ macrophages (IFN-γ), which was followed by higher IL-10 and IL-13 and lower IL-6 and TNF-α in their expression levels, a smaller cystic cavity area, and improved motor functions. These results indicate that OEC and SC co-transplantation could promote the shift of the macrophage phenotype from M(IFN-γ) to M(IL-4), reduce inflammatory cell infiltration in the injured site, and regulate inflammatory factors and chemokine expression, which provide a better immune environment for SCI repair.  相似文献   

6.
Capsaicin treatment (50 mg/kg, subcutaneous) of newborn rats resulted in 1 75% decrease of substance P immunoreactivity in the dorsal spinal cord of the adult animal, but failed to affect levels of the proposed sensory neurotransmitter glutamic acid or to alter high-affinity uptake of [3H]glutamic acid into synaptosomes of the same tissue. Furthermore, capsaicin (30 microM) in vitro had no influence on the release of [3H]glutamic acid from spinal cord P2 fractions of untreated adult rats, but induced a marked release of substance P. The results suggest that, in contrast to substance P fibers, neurons containing glutamic acid are not sensitive to capsaicin. Eleven other neurochemical parameters measured in the spinal cord did not appear to be changed by the treatment with capsaicin, suggesting a considerable neurochemical selectivity of the lesion.  相似文献   

7.
《Biophysical journal》2020,118(2):448-463
Severe injury to the mammalian spinal cord results in permanent loss of function due to the formation of a glial-fibrotic scar. Both the chemical composition and the mechanical properties of the scar tissue have been implicated to inhibit neuronal regrowth and functional recovery. By contrast, adult zebrafish are able to repair spinal cord tissue and restore motor function after complete spinal cord transection owing to a complex cellular response that includes axon regrowth and is accompanied by neurogenesis. The mechanical mechanisms contributing to successful spinal cord repair in adult zebrafish are, however, currently unknown. Here, we employ atomic force microscopy-enabled nanoindentation to determine the spatial distributions of apparent elastic moduli of living spinal cord tissue sections obtained from uninjured zebrafish and at distinct time points after complete spinal cord transection. In uninjured specimens, spinal gray matter regions were stiffer than white matter regions. During regeneration after transection, the spinal cord tissues displayed a significant increase of the respective apparent elastic moduli that transiently obliterated the mechanical difference between the two types of matter before returning to baseline values after the completion of repair. Tissue stiffness correlated variably with cell number density, oligodendrocyte interconnectivity, axonal orientation, and vascularization. This work constitutes the first quantitative mapping of the spatiotemporal changes of spinal cord tissue stiffness in regenerating adult zebrafish and provides the tissue mechanical basis for future studies into the role of mechanosensing in spinal cord repair.  相似文献   

8.
Biological Trace Element Research - Selenium is known to be a neuroprotective agent in respect to a number of neuronal diseases and pain. The aim of this study was to evaluate the neuroprotective...  相似文献   

9.
Abstract: A mass fragmentographic method was used in which homovanillic acid (HVA), methoxyhydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were measured from a single sample. The results describe the effect of morphine on the metabolism of the major monoamines, dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT) in the spinal cord. Morphine has very little effect on the metabolism of DA and NA in the spinal cord. However, morphine causes a significant increase in the metabolism of spinal 5-HT. The increase in 5-HIAA induced by morphine is not restricted to the dorsal horn. The three main functional regions of the cord—dorsal horn (sensory), zona intermedia (autonomic), and ventral horn (somatic motor)—are affected to the same degree. The results indicate that morphine causes a generalized activation of serotonin neurons in the spinal cord. There appears to be little or no selectivity for those serotonergic neurons that innervate the dorsal horn. The results are discussed with reference to current data which indicate a fairly strong link between descending serotonergic nerves and the mechanism of action of morphine-induced analgesia.  相似文献   

10.
Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001) and with the height of the T10 body (r = 0.79, p = 0.02). The mean d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19–143.67 mm3). The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively). Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height.  相似文献   

11.
旨在观察体外器官型培养的脊髓薄片是否与同龄大鼠体内生长的脊髓具有相似的形态和恒定的前角a运动神经元数目,建立能模拟体内生长环境的稳定的脊髓器官培养模型。利用出生后8天乳鼠的腰段脊髓组织切片建立脊髓器官型培养模型,用神经元的特异性免疫组化染色SMI-32对脊髓前角a运动神经元加以鉴定并与同龄大鼠体内生长的脊髓做比较。结果发现脊髓体外生长良好,形态完整,a运动神经元数目恒定,与同龄大鼠比较无显著差异,并可长期存活达2个月。脊髓的器官培养技术为研究脊髓生理、病理改变及神经保护提供了有效的方法。  相似文献   

12.
Acute experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats by inoculation with guinea pig spinal cord homogenate emulsified with Mycobacterium tuberculosis-enriched complete Freund's adjuvant (CFA). Control rats were inoculated with CFA alone. Control and EAE rats were killed on days 7, 9, 11, and 13 postinoculation, and regional brain and spinal cord levels of histamine were determined. No regional differences in histamine content between control and EAE rats were seen on day 7 or 9 postinoculation. However, depending on the region, EAE rats exhibited significantly higher levels of histamine in their CNS on day 11 or 13 postinoculation or on both. Thus, regionally and temporally specific increases in brain and spinal cord levels of histamine develop concomitant with or just after the appearance (on day 10 postinoculation) of clinical signs of acute EAE, a finding suggesting that histamine may be involved in the development or expression of acute EAE in Lewis rats.  相似文献   

13.
Patients with normal pressure hydrocephalus who had three lumbar punctures during 1 week ingested either water, a protein breakfast, or a carbohydrate breakfast 2.5 h before each of the lumbar punctures. The CSF was analyzed for biogenic amine precursors and metabolites. The protein meal raised CSF tyrosine levels, a finding consistent with animal data, but did not alter those of tryptophan or any of the biogenic amine metabolites. The carbohydrate meal increased CSF 3-methoxy-4-hydroxyphenylethylene glycol, an unexplained finding. The carbohydrate meal did not affect CSF tryptophan, tyrosine, 5-hydroxyindoleacetic acid, or homovanillic acid. Our results support the idea that in humans protein or carbohydrate meals do not alter plasma amino acid levels sufficiently to cause appreciable changes in CNS tryptophan levels or 5-hydroxytryptamine synthesis.  相似文献   

14.
大鼠放射性脊髓损伤脊髓血流量变化规律   总被引:1,自引:0,他引:1  
目的:放射性脊髓损伤(Radiation spinal cord injury,RSCI)是头颈部、胸部及上腹部肿瘤放射治疗和射线意外照射时的常见并发症,一般认为,白质坏死、脱髓鞘为其主要的病理学变化.然而,越来越多的证据表明血-脊髓屏障破裂和血管通透性增加等血管损伤远早于白质坏死和脱髓鞘改变.所以本文阐明大鼠放射性脊髓损伤病理生理过程中脊髓血流量变化规律.方法:将60只Sprague-Dawley (SD)大鼠随机分为12组,1组为对照,其余11组采用60Co放射治疗机行30 Gy大鼠颈髓C2-T2单次照射,剂量率为153 cGy/min,源皮距为80 cm,照射时长为1153 s,照射范围为2.0× 1.0 cm,对照组大鼠于麻醉后置于60Co放射治疗机下,佯照,照射前及照射后分别采用激光多普勒法测量脊髓血流量,11组大鼠于照射前以及照射后1、3、7、14、21、30、60、90、120、150、180天进行测量,以照射前测量值为基数,各时间点以基数的百分比表示该时间点脊髓血流量.结果:大鼠放射性脊髓损伤后,脊髓血流量在照射早期即有降低,照射后90天达到最低,随后脊髓血流量进入平台期.结论:阐明了大鼠放射性脊髓损伤后脊髓血流量的变化规律.大鼠放射性脊髓损伤可影响脊髓血流量,导致脊髓长期处于持续低灌流、缺血缺氧状态,最终导致脊髓不可逆性损伤.临床上放射性脊髓损伤的病人感到疲乏无力,出现神经系统的症状体征,通常死于脑疝.本文为临床上疲乏无力,出现神经系统的症状体征,死于脑疝放射性脊髓损伤的病人的早期防治提供病理生理基础.  相似文献   

15.
Yu CG  Geddes JW 《Neurochemical research》2007,32(12):2046-2053
Following contusive spinal cord injury (SCI), calpain activity is dramatically increased and remains elevated for days to weeks. Although calpain inhibition has previously been demonstrated to be neuroprotective following spinal cord injury, most studies administered the calpain inhibitor at a single time point. We hypothesized that sustained calpain inhibition would improve functional and pathological outcomes, as compared to the results obtained with a single postinjury administration of the calpain inhibitor. Contusion SCI was produced in female Long-Evans rats using the Infinite Horizon spinal cord injury impactor at the 200 kdyn force setting. Open-field locomotor function was evaluated until 6 weeks postinjury. Histological assessment of lesion volume and tissue sparing was performed at 6 weeks after SCI. Calpain inhibitor MDL28170 administered as a single postinjury i.v. bolus (20 mg/kg) or as a daily i.p. dose (1 mg/kg) improved locomotor function, but did not increase tissue sparing. Combined i.v. and daily i.p. MDL28170 administration resulted in significant improvement in both functional and pathological outcome measures, supporting the calpain theory of SCI proposed by Dr. Banik and colleagues. Special issue in honor of Naren Banik.  相似文献   

16.
17.
SUMMARY 1. After traumatic spinal cord injury (SCI), histological and neurological consequences are developing for several days and even weeks. However, little is known about the dynamics of changes in spinal axonal conductivity. The aim of this study was to record and compare repeated spinal cord evoked potentials (SCEP) after SCI in the rat during a 4 weeks’ interval. These recordings were used: (i) for studying the dynamics of functional changes in spinal axons after SCI, and (ii) to define the value of SCEP as an independent outcome parameter in SCI studies.2. We have used two pairs of chronically implanted epidural electrodes for stimulation/recording. The electrodes were placed below and above the site of injury, respectively. Animals with implanted electrodes underwent spinal cord compression injury induced by epidural balloon inflation at Th8–Th9 level. There were five experimental groups of animals, including one control group (sham-operated, no injury), and four injury groups (different degrees of SCI).3. After SCI, SCEP waveform was either significantly reduced or completely lost. Partial recovery of SCEPs was observed in all groups. The onset and extent of recovery clearly correlated with the severity of injury.There was good correlation between quantitated SCEP variables and the volumes of the compressing balloon. However, sensitivity of electropohysiological parameters was inferior compared to neurological and morphometric outcomes.4. Our study shows for the first time, that the dynamics of axonal recovery depends on the degree of injury. After mild injury, recovery of signal is rapid. However, after severe injury, axonal conductivity can re-appear after as long as 2 weeks postinjury.In conclusion, SCEPs can be used as an independent parameter of outcome after SCI, but in general, the sensitivity of electrophysiological data were worse than standard morphological and neurological evaluations.  相似文献   

18.
Fu  Dan  Chen  Cai  He  Liang  Li  Jingjuan  Li  Aiguo 《Neurochemical research》2022,47(5):1212-1225
Neurochemical Research - To explore the mechanism regarding the regulation of spinal cord ischemia (SCI) in rats by mild hypothermia. A SCI rat model was established through aorta occlusion, and in...  相似文献   

19.
Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages.  相似文献   

20.
Abstract: The effects of a single large intravenous dose of methylprednisolone on the steady state levels of dopamine, norepinephrine, and 5-hydroxytryptamine in cat lumbar spinal cord, as a function of dose (15, 30, or 90 mg/kg) and time (1 or 24 h) after administration, were examined by high performance liquid chromatography with electrochemical detection. Methylprednisolone produced a dose-related increase in the levels of dopamine and 5-hydroxytryptamine, but not norepinephrine, measured at 1 h. The effect of the single glucocorticoid dose was biphasic, however, as measurement of the three amines at 24 h showed each to be depressed below the levels found in untreated animals. The possible mechanistic basis and the significance of these glucocorticoid effects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号