首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Deu E  Kirsch JF 《Biochemistry》2007,46(19):5810-5818
The guanidine hydrochloride (GdnHCl) mediated denaturation pathway for the apo form of homodimeric Escherichia coli aspartate aminotransferase (eAATase) (molecular mass = 43.5 kDa/monomer) includes a partially folded monomeric intermediate, M* [Herold, M., and Kirschner, K. (1990) Biochemistry 29, 1907-1913; Birolo, L., Dal Piaz, F., Pucci, P., and Marino, G. (2002) J. Biol. Chem. 277, 17428-17437]. The present investigation of the urea-mediated denaturation of eAATase finds no evidence for an M* species but uncovers a partially denatured dimeric form, D*, that is unpopulated in GdnHCl. Thus, the unfolding process is a function of the employed denaturant. D* retains less than 50% of the native secondary structure (circular dichroism), conserves significant quaternary and tertiary interactions, and unfolds cooperatively (mD*<==>U = 3.4 +/- 0.3 kcal mol-1 M-1). Therefore, the following equilibria obtain in the denaturation of apo-eAATase: D <==> 2M 2M* <==> 2U in GdnHCl and D <==> D* <==> 2U in urea (D = native dimer, M = folded monomer, and U = unfolded state). The free energy of unfolding of apo-eAATase (D <==> 2U) is 36 +/- 3 kcal mol-1, while that for the D* 2U transition is 24 +/- 2 kcal mol-1, both at 1 M standard state and pH 7.5.  相似文献   

3.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

4.
The unfolding process of human serum albumin between pH 5.4 and 9.9 was studied by chemical and thermal denaturations. The experimental results showed that there is no correlation between the stability of albumin at different pH values determined by both methods. The free energy change of unfolding versus concentration of guanidine showed a close dependence on the pH, suggesting that the variation of the electrical charge of albumin influences the final state of the unfolded form of the protein. Spectroscopic techniques, such as native fluorescence of the protein and circular dichroism, demonstrated that the unfolded state of the protein obtained from both methods possesses a different helical content. The solvophobic effect and the entropy of the chains have no influence on the final unfolding state when the protein is unfolded by thermal treatment, while, when the protein is unfolded by chemical denaturants, both effects depend on the medium pH. The results indicate that guanidine and urea interact with albumin by electrostatic forces, yielding a randomly coiled conformation in its unfolded state, while thermal denaturation produces a molten globule state and the aggregation of the protein; therefore, both methods yield different structurally unfolded states of the albumin.  相似文献   

5.
Anthrax lethal factor (LF) is a zinc-dependent endopeptidase which, through a process facilitated by protective antigen, translocates to the host cell cytosol in a partially unfolded state. In the current report, the influence of urea and guanidine hydrochloride (GdnHCl) on LF?s catalytic function, fold and metal binding was assessed at neutral pH. Both urea and GdnHCl were found to inhibit LF prior to the onset of unfolding, with the inhibition by the latter denaturant being a consequence of its ionic strength. With the exception of demetallated LF (apoLF) in urea, unfolding, as monitored by tryptophan fluorescence spectroscopy, was found to follow a two-state (native to unfolded) mechanism. Analysis of the metal status of LF with 4-(2-pyridylazoresorcinol) (PAR) following urea or GdnHCl exposure suggests the enzyme to be capable of maintaining its metal ion passed the observed unfolding transition in a chelator-inaccessible form. Although an increase in the concentration of the denaturants eventually allowed the chelator access to the protein?s zinc ion, such process is not correlated with the release of the metal ion. Indeed, significant dissociation of the zinc ion from LF was not observed even at 6 M urea, and only high concentrations of GdnHCl (>3 M) were capable of inducing the release of the metal ion from the protein. Hence, the current study demonstrates not only the propensity of LF to tightly bind its zinc ion beyond the spectroscopically determined unfolding transition, but also the utility of PAR as a structural probe.  相似文献   

6.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

7.
8.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

9.
B R Rami  J B Udgaonkar 《Biochemistry》2001,40(50):15267-15279
Equilibrium and kinetic characterization of the high pH-induced unfolding transition of the small protein barstar have been carried out in the pH range 7-12. A mutant form of barstar, containing a single tryptophan, Trp 53, completely buried in the core of the native protein, has been used. It is shown that the protein undergoes reversible unfolding above pH 10. The pH 12 form (the D form) appears to be as unfolded as the form unfolded by 6 M guanidine hydrochloride (GdnHCl) at pH 7 (the U form): both forms have similar fluorescence and far-UV circular dichroism (CD) signals and have similar sizes, as determined by dynamic light scattering and size-exclusion chromatography. No residual structure is detected in the D form: addition of GdnHCl does not alter its fluorescence and far-UV CD properties. The fluorescence signal of Trp 53 has been used to monitor folding and unfolding kinetics. The kinetics of folding of the D form in the pH range 7-11 are complex and are described by four exponential processes, as are the kinetics of unfolding of the native state (N state) in the pH range 10.5-12. Each kinetic phase of folding decreases in rate with increase in pH from 7 to 10.85, and each kinetic phase of unfolding decreases in rate with decrease in pH from 12 to 10.85. At pH 10.85, the folding and unfolding rates for any particular kinetic phase are identical and minimal. The two slowest phases of folding and unfolding have identical kinetics whether measured by Trp 53 fluorescence or by mean residue ellipticity at 222 nm. Direct determination of the increase in the N state with time of folding at pH 7 and of the D form with time of unfolding at pH 12, by means of double-jump assays, show that between 85 and 95% of protein molecules fold or unfold via fast pathways between the two forms. The remaining 5-15% of protein molecules appear to fold or unfold via slower pathways, on which at least two intermediates accumulate. The mechanism of folding from the high pH-denatured D form is remarkably similar to the mechanism of folding from the urea or GdnHCl-denatured U form.  相似文献   

10.
Equilibrium and kinetic folding studies of horse cytochrome c in the reduced state have been carried out under strictly anaerobic conditions at neutral pH, 10 degrees C, in the entire range of aqueous solubility of guanidinium hydrochloride (GdnHCl). Equilibrium unfolding transitions observed by Soret heme absorbance, excitation energy transfer from the lone tryptophan residue to the ferrous heme, and far-UV circular dichroism (CD) are all biphasic and superimposable, implying no accumulation of structural intermediates. The thermodynamic parameters obtained by two-state analysis of these transitions yielded DeltaG(H2O)=18.8(+/-1.45) kcal mol(-1), and C(m)=5.1(+/-0.15) M GdnHCl, indicating unusual stability of reduced cytochrome c. These results have been used in conjunction with the redox potential of native cytochrome c and the known stability of oxidized cytochrome c to estimate a value of -164 mV as the redox potential of the unfolded protein. Stopped-flow kinetics of folding and unfolding have been recorded by Soret heme absorbance, and tryptophan fluorescence as observables. The refolding kinetics are monophasic in the transition region, but become biphasic as moderate to strongly native-like conditions are approached. There also is a burst folding reaction unobservable in the stopped-flow time window. Analyses of the two observable rates and their amplitudes indicate that the faster of the two rates corresponds to apparent two-state folding (U<-->N) of 80-90 % of unfolded molecules with a time constant in the range 190-550 micros estimated by linear extrapolation and model calculations. The remaining 10-20 % of the population folds to an off-pathway intermediate, I, which is required to unfold first to the initial unfolded state, U, in order to refold correctly to the native state, N (I<-->U<-->N). The slower of the two observable rates, which has a positive slope in the linear functional dependence on the denaturant concentration indicating that an unfolding process under native-like conditions indeed exists, originates from the unfolding of I to U, which rate-limits the overall folding of these 10-20 % of molecules. Both fast and slow rates are independent of protein concentration and pH of the refolding milieu, suggesting that the off-pathway intermediate is not a protein aggregate or trapped by heme misligation. The nature or type of unfolded-state heme ligation does not interfere with refolding. Equilibrium pH titration of the unfolded state yielded coupled ionization of the two non-native histidine ligands, H26 and H33, with a pK(a) value of 5.85. A substantial fraction of the unfolded population persists as the six-coordinate form even at low pH, suggesting ligation of the two methionine residues, M65 and M80. These results have been used along with the known ligand-binding properties of unfolded cytochrome c to propose a model for heme ligation dynamics. In contrast to refolding kinetics, the unfolding kinetics of reduced cytochrome c recorded by observation of Soret absorbance and tryptophan fluorescence are all slow, simple, and single-exponential. In the presence of 6.8 M GdnHCl, the unfolding time constant is approximately 300(+/-125) ms. There is no burst unfolding reaction. Simulations of the observed folding-unfolding kinetics by numerical solutions of the rate equations corresponding to the three-state I<-->U<-->N scheme have yielded the microscopic rate constants.  相似文献   

11.
Equilibrium amide hydrogen exchange studies of barstar have been carried out at pH 6.7, 32° SDC using one- and two-dimensional nuclear magnetic resonance. An unusually large fraction of the backbone amide hydrogens of barstar exchange too fast to be measured, and the exchange rates of only fifteen slow-exchanging amide sites including indole amides of two tryptophans could be measured in the presence of 0 to 1.8 M guanidine hydrochloride (GdnHCl). Measurement of exchange occurring in tens of seconds in the unfolding transition region was possible by the use of a fast stopped-flow mixing method. The observed exchange rates have been simulated in the EX2 limit according to a two-process model that incorporates two exchange-competent states: a transiently unfolded state (U*) in which many amide hydrogens are completely accessible to solvent-exchange, and a near-native locally unfolded state (N*), in which only one or a few amide hydrogens are completely accessible to solvent-exchange. The two-process model appears to account for the observed exchange behavior over the entire range of GdnHCl concentrations studied. For several measurable slow-exchanging amide hydrogens, the free energies of production of exchange-competent states from the exchange-incompetent native state are significantly higher than the free-energy of production of the equilibrium unfolded state from the native state, when the latter is determined from circular dichroism- or fluorescence-monitored equilibrium unfolding curves. The result implies that U*, which forms transiently in the strongly native-like conditions used for the hydrogen exchange studies, is higher in energy than the equilibrium-unfolded state. The higher energy of this transiently unfolded exchange-competent state can be attributed to either proline isomerization or to the presence of residual structure. On the basis of the free energies of production of exchange-competent states, the measured amide sites of barstar appear to define two structural subdomains—a three-helix unit and a two-β-strand unit in the core of the protein. Proteins 30:295–308, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

13.
Ca2+-induced alteration in the unfolding behavior of alpha-lactalbumin   总被引:5,自引:0,他引:5  
Comparative studies of the unfolding equilibria of two homologous proteins, bovine alpha-lactalbumin and hen lysozyme, induced by treatment with guanidine hydrochloride have been made by analysis of the peptide and the aromatic circular dichroism spectra. The effect of the specific binding of Ca2+ ion by the former protein was taken into account in interpreting the unfolding equilibria of the protein. Proton nuclear magnetic resonance spectra of alpha-lactalbumin were also measured for the purpose of characterizing an intermediate structural state of the protein. In previous studies, alpha-lactalbumin was shown to be an exceptional protein whose equilibrium unfolding does not obey the two-state model of unfolding, although lysozyme is known to follow the two-state unfolding mechanism. The present results show that the apparent unfolding behavior of alpha-lactalbumin depends on Ca2+ concentration. At a low concentration of Ca2+, alpha-lactalbumin unfolds with a stable intermediate that has unfolded tertiary structure, as evidenced by the featureless nuclear magnetic resonance and aromatic circular dichroism spectra, but has folded secondary structure as evidenced by the peptide circular dichroism spectra. However, in the presence of a sufficiently high concentration of Ca2+, the unfolding transition of alpha-lactalbumin resembles that of lysozyme. The transition occurs between the two states, the native and the fully unfolded states, and the cooperativity of the unfolding is essentially the same as that of lysozyme. Such a change in the apparent unfolding behavior evidently results from an increase in the stability of the native state relative to that of the intermediate induced by the specific Ca2+ binding to native alpha-lactalbumin. The results are useful for understanding the relationship between the protein stability and the apparent unfolding behavior.  相似文献   

14.
Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.  相似文献   

15.
Chedad A  Van Dael H 《Proteins》2004,57(2):345-356
The equilibrium unfolding and the kinetic folding and unfolding of goat alpha-lactalbumin (GLA) were studied by near- and far-ultraviolet circular dichroism (CD) and by stopped-flow fluorescence spectroscopy. Specifically, the influence of environmental conditions such as pH and Ca2+ binding was examined. Compared to the apo-form, the Ca2+-bound form was found to be strongly stabilized in equilibrium conditions at pH 7.5 and 25 degrees C. The kinetics of the refolding of apo-GLA show a major change of fluorescence intensity during the experimental dead-time, but this unresolved effect is strongly diminished in holo-GLA. In both cases, however, the chevron plots can adequately be fitted to a three-state model. Moreover, double-mix stopped-flow experiments showed that the native state (N) is reached through one major pathway without the occurrence of alternative tracks. In contrast to the homologous bovine alpha-lactalbumin (BLA), the compactness of GLA is strongly influenced by the presence of Ca2+ ions. Unlike the two-state transition observed in guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation experiments at higher pH, an equilibrium intermediate state (I) is involved in denaturation at pH 4.5. In the latter case, analysis of the kinetic data makes clear that the intermediate and the unfolded states (U) show practically no Gibbs free energy difference and that they are in rapid equilibrium with each other. A possible explanation for these variations in stability and in folding characteristics with pH could be the degree of protonation of His107 that directly influences non-native interactions. Variation of environmental conditions and even small differences in sequence, therefore, can result in important effects on thermodynamic and folding parameters.  相似文献   

16.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

17.
The equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model. Unfolding of Cro monomer is well described by the standard two state model. The stability of both forms of protein increases in the presence of salt but decreases with the decrease in pH. Because of the suggested importance of a N2<-->2F dimerization process in DNA binding, we have also studied the effect of sodium perchlorate, containing the chaotropic perchlorate anion, on the conformational transition of Cro dimer by CD, fluorescence and NMR (in addition to urea and guanidine hydrochloride) in an attempt both to characterize the thermodynamics of the process and to identify conditions that lead to an increase in the population of the folded monomers. Data suggest that sodium perchlorate stabilizes the protein at low concentration (<1.5 M) and destabilizes the protein at higher perchlorate concentration with the formation of a "significantly folded" monomer. The tryptophan residue in the "significantly folded" monomer induced by perchlorate is more exposed to the solvent than in native dimer.  相似文献   

18.
Lee DW  Hong YH  Choe EA  Lee SJ  Kim SB  Lee HS  Oh JW  Shin HH  Pyun YR 《FEBS letters》2005,579(5):1261-1266
To gain insight into the structural stability of homologous homo-tetrameric l-arabinose isomerases (AI), we have examined the isothermal guanidine hydrochloride (GdnHCl)-induced unfolding of AIs from mesophilic Bacillus halodurans (BHAI), thermophilic Geobacillus stearothermophilus (GSAI), and hyperthermophilic Thermotoga maritima (TMAI) using circular dichroism spectroscopy. The GdnHCl-induced unfolding of the AIs can be well described by a two-state reaction between native tetramers and unfolded monomers, which directly confirms the validity of the linear extrapolation method to obtain the intrinsic stabilities of these proteins. The resulting unfolding free energy (DeltaGU) values of the AIs as a function of temperature were fit to the Gibbs-Helmholtz equation to determine their thermodynamic parameters based on a two-state mechanism. Compared with the stability curves of BHAI in the presence and absence of Mn2+, those of holo GSAI and TMAI were more broadened than those of the apo enzymes at all temperatures, indicating increased melting temperatures (Tm) due to decreased heat capacity (DeltaGp). Moreover, the extent of difference in DeltaCp between the apo and holo thermophilic AIs is larger than that of BHAI. From these studies, we suggest that the metal dependence of the thermophilic AIs, resulting in the reduced DeltaCp, may play a significant role in structural stability compared to their mesophilic analogues, and that the extent of metal dependence of AI stability seems to be highly correlated to oligomerization.  相似文献   

19.
We have earlier reported that both guanidine hydrochloride (GdnHCl)-induced and heat-induced unfolding of seed coat soybean peroxidase (SBP), monitored by far UV CD, show single step transition. However, although GdnHCl-induced unfolding follows a two-state pathway, the heat-induced denaturation proceeds through intermediates as indicated by the very low cooperativity of transition. In the former case, analysis of the data based on the two-state model gives true thermodynamic parameters, whereas underestimated values are obtained in the latter case. Available complex equations also cannot be applied for the analysis of the thermal unfolding of SBP due to the absence of separate transitions for the intermediates. In the present study, we report a method to obtain true thermodynamic parameters from thermal transition curves of SBP using the two-state model. When SBP is subjected to thermal unfolding at high GdnHCl concentrations (5.8-6.9 M), cooperative behavior is observed, which allowed the analysis by the two-state model to determine their thermodynamic parameters. We then obtained the thermodynamic parameters in the absence of GdnHCl by extrapolating the graph of linear dependence of DeltaH(m) on T(m) to the T(m) corresponding to 0 m GdnHCl. Another key point for checking the validity of our method was the fact that the unfolded state of SBP generated by either heat or GdnHCl is the same by which we could cross-check our results with that obtained from GdnHCl unfolding. Having obtained the true thermodynamic parameters, we report a detailed thermodynamic study of SBP. Further we address the effect of heme in the thermal unfolding mechanism of SBP.  相似文献   

20.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号