首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
2.
Recently, mouse maternal mRNAs such as SSEC-D, Spin, beta-catenin, Ptp4a1, and Maid have been found to exhibit de novo independent polyadenylation after fertilization. To obtain an overall picture of post-fertilization polyadenylation events, we developed a novel method for constructing murine fertilized egg cDNA library enriched with cDNAs exhibiting de novo independent polyadenylation. As a pilot study, we isolated at least four new maternal mRNAs exhibiting extension of poly(A) tail in fertilized 1-cell eggs. Moreover, various types of polyadenylation of maternal RNAs were observed at this stage, suggesting the presence of novel mechanisms for regulating the length of poly(A) tails of maternal mRNA. This is the first report of successful construction of a cDNA library enriched with newly polyadenylated maternal mRNAs derived from post-fertilized mouse eggs. This cDNA library will be useful for molecular analysis of the mechanisms underlying post-fertilization polyadenylation of mammalian maternal RNAs.  相似文献   

3.
The addition of poly(A)-tails to RNA is a phenomenon common to almost all organisms. In addition to most eukaryotic mRNAs possessing a stable poly(A)-tail, RNA is polyadenylated as part of a degradation mechanism in prokaryotes, organelles, and the eukaryotic nucleus. To date, only very few systems have been described wherein RNA is metabolized without polyadenylation, including several archaea and yeast mitochondria. The minimal genome of the parasitic bacteria, Mycoplasma, does not encode homologs of any known polyadenylating enzyme. Here, we analyze polyadenylation in Mycoplasma gallisepticum. Our results suggest this organism as being the first described bacterium in which RNA is not polyadenylated.  相似文献   

4.
Polyadenylation of ribosomal RNA in human cells   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

5.
徐海冬  宁博林  牟芳  李辉  王宁 《遗传》2021,(1):4-15
真核生物基因的前体mRNA(pre-mRNA)及一些lncRNA在成熟过程中其3'端会发生剪切和多聚腺苷酸化反应(cleavage and polyadenylation, C/P),C/P的发生需要多聚腺苷酸化信号(polyadenylation signal, PAS)的存在。选择性多聚腺苷酸化(alternative cleavage and polyadenylation, APA)是指具有多个PAS的基因,在其mRNA3'端成熟过程中,由于选择不同的PAS,导致产生出多个3'UTR长度和序列组成不同的转录异构体。3'UTR长度和序列的不同会影响mRNA的稳定性、翻译效率、运输和细胞定位等,因此APA是真核生物的一个重要转录后调控方式。近年来,对大量动物、植物及酵母的基因组测序分析发现,APA在真核生物广泛存在,针对APA的生物学效应和调控机制开展了一系列研究。目前已鉴定出许多APA调控的顺式调控元件和反式作用因子。本文重点介绍了APA生物学效应和调控机制的最新研究进展,并探讨了未来APA调控的研究方向。  相似文献   

6.
Recently, we and others have reported that mRNAs may be polyadenylated in plant mitochondria, and that polyadenylation accelerates the degradation rate of mRNAs. To further characterize the molecular mechanisms involved in plant mitochondrial mRNA degradation, we have analyzed the polyadenylation and degradation processes of potato atp9 mRNAs. The overall majority of polyadenylation sites of potato atp9 mRNAs is located at or in the vicinity of their mature 3'-extremities. We show that a 3'- to 5'-exoribonuclease activity is responsible for the preferential degradation of polyadenylated mRNAs as compared with non-polyadenylated mRNAs, and that 20-30 adenosine residues constitute the optimal poly(A) tail size for inducing degradation of RNA substrates in vitro. The addition of as few as seven non-adenosine nucleotides 3' to the poly(A) tail is sufficient to almost completely inhibit the in vitro degradation of the RNA substrate. Interestingly, the exoribonuclease activity proceeds unimpeded by stable secondary structures present in RNA substrates. From these results, we propose that in plant mitochondria, poly(A) tails added at the 3' ends of mRNAs promote an efficient 3'- to 5'- degradation process.  相似文献   

7.
8.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

9.
10.
Activity-dependent polyadenylation in neurons   总被引:4,自引:1,他引:3       下载免费PDF全文
Du L  Richter JD 《RNA (New York, N.Y.)》2005,11(9):1340-1347
Activity-dependent changes in protein synthesis modify synaptic efficacy. One mechanism that regulates mRNA translation in the synapto-dendritic compartment is cytoplasmic polyadenylation, a process controlled by CPEB, the cytoplasmic polyadenylation element (CPE)-specific RNA binding protein. In neurons, very few mRNAs are known CPEB substrates, and none appear to be responsible for the effects on plasticity that are found in the CPEB knockout mouse. These results suggest that the translation of other mRNAs is regulated by CPEB. To identify them, we have developed a functional assay based on the polyadenylation of brain-derived mRNAs injected into Xenopus oocytes, a surrogate system that carries out this 3' end processing event in an efficient manner. The polyadenylated RNAs were isolated by binding to and thermal elution from poly(U) agarose and identified by microarray analysis. Selected sequences that were positive for polyadenylation were cloned and retested for polyadenylation by injection into oocytes. These sequences were then examined for activity-dependent polyadenylation in cultured hippocampal neurons. Finally, the levels of two proteins encoded by polyadenylated mRNAs were examined in glutamate-stimulated synaptoneurosomes. These studies show that many mRNAs undergo activity-dependent polyadenylation in neurons and that this process coincides with increased translation in the synapto-dendritic compartment.  相似文献   

11.
RNA quality control: degradation of defective transfer RNA   总被引:17,自引:0,他引:17  
The distinction between stable (tRNA and rRNA) and unstable (mRNA) RNA has been considered an important feature of bacterial RNA metabolism. One factor thought to contribute to the difference between these RNA populations is polyadenylation, which promotes degradation of unstable RNA. However, the recent discovery that polyadenylation also occurs on stable RNA led us to examine whether poly(A) might serve as a signal for eliminating defective stable RNAs, and thus play a role in RNA quality control. Here we show that a readily denaturable, mutant tRNA(Trp) does not accumulate to normal levels in Escherichia coli because its precursor is rapidly degraded. Degradation is largely dependent on polyadenylation of the precursor by poly(A) polymerase and on its removal by polynucleotide phosphorylase. Thus, in the absence of these two enzymes large amounts of tRNA(Trp) precursor accumulate. We propose that defective stable RNA precursors that are poorly converted to their mature forms may be polyadenylated and subsequently degraded. These data indicate that quality control of stable RNA metabolism in many ways resembles normal turnover of unstable RNA.  相似文献   

12.
13.
Plant cells do not properly recognize animal gene polyadenylation signals   总被引:4,自引:0,他引:4  
Summary We have introduced chimeric genes containing polyadenylation signals from a human gene and two animal virus genes into tobacco cells. We see, in all three cases, inefficient and aberrant utilization of the foreign polyadenylation signals. We find that a chimeric gene carrying the polyadenylation site of the human growth hormone gene is polyadenylated at three sites in the vicinity of the site that is polyadenylated in human cells. A chimeric gene containing the polyadenylation site from the adenovirus 5 E1A gene is polyadenylated at a site 11 bases downstream from that reported in animal cells. A gene carrying the polyadenylation site from the SV40 early region is polyadenylated some 80 bases upstream from the site that is polyadenylated in animal cells. In all three cases, related mRNAs ending at flanking authentic plant polyadenylation sites can be detected, indicating that the foreign polyadenylation signals are inefficiently utilized in tobacco cells.  相似文献   

14.
15.
16.
17.
PAPD5 is one of the seven members of the family of noncanonical poly(A) polymerases in human cells. PAPD5 was shown to polyadenylate aberrant pre-ribosomal RNAs in vivo, similar to degradation-mediating polyadenylation by the noncanonical poly(A) polymerase Trf4p in yeast. PAPD5 has been reported to be also involved in the uridylation-dependent degradation of histone mRNAs. To test whether PAPD5 indeed catalyzes adenylation as well as uridylation of RNA substrates, we analyzed the in vitro properties of recombinant PAPD5 expressed in mammalian cells as well as in bacteria. Our results show that PAPD5 catalyzes the polyadenylation of different types of RNA substrates in vitro. Interestingly, PAPD5 is active without a protein cofactor, whereas its yeast homolog Trf4p is the catalytic subunit of a bipartite poly(A) polymerase in which a separate RNA-binding subunit is needed for activity. In contrast to the yeast protein, the C terminus of PAPD5 contains a stretch of basic amino acids that is involved in binding the RNA substrate.  相似文献   

18.
真核细胞的前体mRNA必须经过复杂的加工过程才能成熟,包括5’端加帽、剪接和3’端加工,其中3’加工包括3’端的切割和多聚腺苷酸化.该过程由前体mRNA上的顺式作用元件以及多个蛋白质因子控制.组成哺乳动物前体mRNA3’端加工机器的核心蛋白质复合体有切割和多聚腺苷酸化特异性因子、切割刺激因子、切割因子Ⅰ和切割因子Ⅱ.其他因子包括poly(A)聚合酶、poly(A)结合蛋白、偶对蛋白(symplekin)等.哺乳动物基因通常含有多个ploy(A)位点,选择性多聚腺苷酸化不仅可产生具有不同长度3’UTR的mRNA异构体,还可能改变基因的CDS区.作为真核生物基因表达调控的关键机制,选择性多聚腺苷酸化在细胞生长、增殖和分化中起着重要作用.本文综述了哺乳动物前体mRNA的3’端加工过程,3’端加工机器的组成及功能,探讨了选择性多聚腺苷酸化在多种人类疾病中的作用机制,以期为读者带来一些新的见解.  相似文献   

19.
20.
Polyadenylation of RNAs plays a critical role in modulating rates of RNA turnover and ultimately in controlling gene expression in all systems examined to date. In mitochondria, the precise mechanisms by which RNAs are degraded, including the role of polyadenylation, are not well understood. Our previous in organello pulse-chase experiments suggest that poly(A) tails stimulate degradation of mRNAs in the mitochondria of the protozoan parasite Trypanosoma brucei (Militello, K. T., and Read, L. K. (2000) Mol. Cell. Biol. 21, 731-742). In this report, we developed an in vitro assay to directly examine the effects of specific 3'-sequences on RNA degradation. We found that a salt-extracted mitochondrial membrane fraction preferentially degraded polyadenylated mitochondrially and non-mitochondrially encoded RNAs over their non-adenylated counterparts. A poly(A) tail as short as 5 nucleotides was sufficient to stimulate rapid degradation, although an in vivo tail length of 20 adenosines supported the most rapid decay. A poly(U) extension did not promote rapid RNA degradation, and RNA turnover was slowed by the addition of uridine residues to the poly(A) tail. To stimulate degradation, the poly(A) element must be located at the 3' terminus of the RNA. Finally, we demonstrate that degradation of polyadenylated RNAs occurs in the 3' to 5' direction through the action of a hydrolytic exonuclease. These experiments demonstrate that the poly(A) tail can act as a cis-acting element to facilitate degradation of T. brucei mitochondrial mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号