首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Embryonic development of the human hematopoietic system   总被引:6,自引:0,他引:6  
Human hematopoiesis is initiated in the yolk sac during the third week of development. At the same time the capacity to produce blood cells also arises in the embryo, within the splanchnopleura, but this potential is not expressed before day 27, when clustered hematopoietic stem cells emerge from the ventral wall of the aorta and vitelline artery. Budding of hematopoietic cells from vessel walls reflects the re-differentiation of local endothelial cells, which are likely derived from angio-hematopoietic mesodermal ancestors emigrated from the splanchnopleura. Yolk sac-derived stem cells are limited to myelo-erythroid development, whereas those born in the embryo are, in addition, lymphopoietic and therefore represent the first multi-potent, adult-type blood progenitors that appear in human ontogeny, preceding shortly the onset of liver hematopoiesis. These results allowed the establishment of a novel hierarchy of blood-forming tissues in human development and induced an in depth reconsideration of the very origin of definitive human hematopoiesis. These results also fully corroborate the outcome of experiments performed in parallel in avian and mouse embryos and point to the conservation in all higher vertebrates of an ancestral route of blood cell production via embryonic vessel walls.  相似文献   

3.
4.
5.
6.
The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.  相似文献   

7.
Two mechanisms account for the formation of blood vessels, vasculogenesis and angiogenesis. Unfortunately, the terms vasculogenesis and angiogenesis literally have the same meaning, i.e., the genesis of blood vessels, and thus do little to distinguish between the two processes. Despite the nomenclature, the two processes are clearly distinct. Vasculogenesis, the de novo formation of blood vessels from mesoderm, is driven by the recruitment of undifferentiated mesodermal cells to the endothelial lineage and the de novo assembly of such cells into blood vessels. Angiogenesis is the generation of new blood vessels from endothelial cells of existing blood vessels, a process driven by endothelial cell proliferation. Recent years have seen dramatic changes in our understanding of the process of vasculogenesis, expanding the scope of its occurrence beyond the earliest stages of development to include involvement in neovascular processes throughout development as well as in the adult. In this review, emphasis is placed on discussion of emerging perspectives on the process of vasculogenesis in both the embryo and the adult.  相似文献   

8.
We have followed the normal development of the different cell types associated with the Drosophila dorsal vessel, i.e. cardioblasts, pericardial cells, alary muscles, lymph gland and ring gland, by using several tissue-specific markers and transmission electron microscopy. Precursors of pericardial cells and cardioblasts split as two longitudinal rows of cells from the lateral mesoderm of segments T2-A7 (cardiogenic region) during stage 12. The lymph gland and dorsal part of the ring gland (corpus allatum) originate from clusters of lateral mesodermal cells located in T3 and T1/dorsal ridge, respectively. Cardioblast precursors are strictly segmentally organized; each of T2-A6 gives rise to six cardioblasts. While moving dorsally during the stages leading up to dorsal closure, cardioblast precursors become flattened, polarized cells aligned in a regular longitudinal row. At dorsal closure, the leading edges of the cardioblast precursors meet their contralateral counterparts. The lumen of the dorsal vessel is formed when the trailing edges of the cardioblast precursors of either side bend around and contact each other. The amnioserosa invaginates during dorsal closure and is transiently attached to the cardioblasts; however, it does not contribute to the cells associated with the dorsal vessel and degenerates during late embryogenesis. We describe ultrastructural characteristics of cardioblast differentiation and discuss similarities between cardioblast development and capillary differentiation in vertebrates. Correspondence to: V. Hartenstein  相似文献   

9.
Cellular reprogramming and induced pluripotent stem cell(IPSC) technology demonstrated the plasticity of adult cell fate, opening a new era of cellular modelling and introducing a versatile therapeutic tool for regenerative medicine.While IPSCs are already involved in clinical trials for various regenerative purposes, critical questions concerning their medium-and long-term genetic and epigenetic stability still need to be answered. Pluripotent stem cells have been described in the last decades in various mammalian and human tissues(such as bone marrow, blood and adipose tissue). We briefly describe the characteristics of human-derived adult stem cells displaying in vitro and/or in vivo pluripotency while highlighting that the common denominators of their isolation or occurrence within tissue are represented by extreme cellular stress. Spontaneous cellular reprogramming as a survival mechanism favoured by senescence and cellular scarcity could represent an adaptative mechanism. Reprogrammed cells could initiate tissue regeneration or tumour formation dependent on the microenvironment characteristics. Systems biology approaches and lineage tracing within living tissues can be used to clarify the origin of adult pluripotent stem cells and their significance for regeneration and disease.  相似文献   

10.
《Cytotherapy》2023,25(3):261-269
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.  相似文献   

11.
Hematopoietic Stem Cells (HSCs) are responsible for the production and replenishment of all blood cell types during the entire life of an organism. Generated during embryonic development, HSCs transit through different anatomical niches where they will expand before colonizing in the bone marrow, where they will reside during adult life. Although the existence of HSCs has been known for more than fifty years and despite extensive research performed in different animal models, there is still uncertainty with respect to the precise origins of HSCs. We review the current knowledge on embryonic hematopoiesis and highlight the remaining questions regarding the anatomical and cellular identities of HSC precursors.  相似文献   

12.
13.
Two different types of ears characterize the order of Orthopteran insects. The auditory organs of grasshoppers and locusts (Caelifera) are located in the first abdominal segment, those of bushcrickets and crickets (Ensifera) are found in the tibiae of the prothoracic legs. Using neuron-specific antibody labelling, we describe the ontogenetic origin of these two types of auditory organs, use comparative developmental studies to identify their segmental homologs, and on the basis of homology postulate their evolutionary origin. In grasshoppers the auditory receptors develop by epithelial invagination of the body wall ectoderm in the first abdominal segment. Subsequently, at least a part of the receptor cells undergo active migration and project their out-growing axons onto the next anterior intersegmental nerve. During this time the receptor cells and their axons express the cell-cell adhesion molecule, Fasciclin I. Similar cellular and molecular differentiation processes in neighboring segments give rise to serially homologous sensory organs, the pleural chordotonal organs in the pregenital abdominal segments, and the wing-hinge chordotonal organs in the thoracic segments. In more primitive earless grasshoppers pleural chordotonal organs are found in place of auditory organs in the first abdominal segment. In bushcrickets the auditory receptors develop in association with the prothoracic subgenual organ from a common developmental precursor. The auditory receptor neurons in these insects are homologous to identified mechanoreceptors in the meso- and metathoracic legs. The established intra- and interspecies homologies provide insight into the evolution of the auditory organs of Orthopterans.  相似文献   

14.
Numerous results on membrane lipid composition from different regions of autopsied Alzheimer's disease brains in comparison with corresponding fractions isolated from control brains revealed significant differences in serine- and ethanolamine-containing glycerophospholipid as well as in glycosphingolipid content. Changes in membrane lipid composition are frequently accompanied by alterations in membrane fluidity, hydrophobic mismatch, lipid signaling pathways, transient formation and disappearance of lipid microdomains, changes in membrane permeability to cations and variations of other membrane properties. In this review we focus on possible implications of altered membrane composition on beta-amyloid precursor protein (APP) and on proteolysis of APP leading eventually to the formation of neurotoxic beta-amyloid (A beta) peptides, the major proteinaceous component of extracellular senile plaques, directly involved in Alzheimer's disease pathogenesis.  相似文献   

15.
The ureteric bud (UB) is an outgrowth of the Wolffian duct, which undergoes a complex process of growth, branching, and remodeling, to eventually give rise to the entire urinary collecting system during kidney development. Understanding the mechanisms that control this process is a fascinating problem in basic developmental biology, and also has considerable medical significance. Over the past decade, there has been significant progress in our understanding of renal branching morphogenesis and its regulation, and this review focuses on several areas in which there have been recent advances. The first section deals with the normal process of UB branching morphogenesis, and methods that have been developed to better observe and describe it. The next section discusses a number of experimental methodologies, both established and novel, that make kidney development in the mouse a powerful and attractive experimental system. The third section discusses some of the cellular processes that are likely to underlie UB branching morphogenesis, as well as recent data on cell lineages within the growing UB. The fourth section summarizes our understanding of the roles of two groups of growth factors that appear to be particularly important for the regulation of UB outgrowth and branching: GDNF and FGFs, which stimulate this process via tyrosine kinase receptors, and members of the TGFbeta family, including BMP4 and Activin A, which generally inhibit UB formation and branching.  相似文献   

16.
The effects of a single non-carcinogenic dose of 15 mg/kg methylnitrosourea (MNU) on the immune and hematopoietic systems of adult specific-pathogen-free (SPF) cats were determined. The cell-mediated-immune (CMI) system was markedly suppressed, as evidenced by: (i) Prolonged cutaneous allograft retention time (41-84 days); (ii) Decreased lymphocyte blast transformation response to mitogens (2% of pretreatment response to pokeweed mitogen or concanavalin A) and antigen (12% of untreated control cat response to keyhole limpet hemocyanin); (iii) Reduced number of absolute erythrocyte-rosetting T-cells in the peripheral blood. This immunosuppression lasted at least 3 months, the duration of the experiment. Suppression of the hematopoietic system was also noted as evidenced by: (i) Peripheral lymphopenia lasting 3 months and neutropenia lasting 3 weeks; (ii) Bone marrow hypocellularity lasting 3 weeks; (iii) Hypoplasia of neutrophilic precursors lasting 3 weeks and erythroid precursors lasting 4 days. It was concluded that a single non-carcinogenic dose of MNU induces a prolonged suppression of the CMI system and a brief suppression of hematopoiesis in adult SPF cats. The immunosuppression may in part be responsible for the previously observed increased susceptibility to feline leukemia virus infection and disease of adult SPF cats treated with MNU.  相似文献   

17.
At least one of the primitive embryonic hemoglobins (Hbs) dissociates into monomers after treatment with p-chloromercury benzoate. The other primitive embryonic Hbs as well as the definitive embryonic and the adult Hbs are probably dissociated, by this reagent, into dimers. A globin from a primitive embryonic Hb component, which can be completely dissociated by this agent, may be isolated by gel filtration on Sephadex.  相似文献   

18.
Sensory nerves play a vital role in maintaining corneal transparency. They originate in the trigeminal ganglion, which is derived from two embryonic cell populations (cranial neural crest and ectodermal placode). Nonetheless, it is unclear whether corneal nerves arise from neural crest, from placode, or from both. Quail-chick chimeras and species-specific antibodies allowed tracing quail-derived neural crest or placode cells during trigeminal ganglion and corneal development, and after ablation of either neural crest or placode. Neural crest chimeras showed quail nuclei in the proximal part of the trigeminal ganglion, and quail nerves in the pericorneal nerve ring and in the cornea. In sharp contrast, placode chimeras showed quail nuclei in the distal part of the trigeminal ganglion, but no quail nerves in the cornea or in the pericorneal nerve ring. Quail placode-derived nerves were present, however, in the eyelids. Neural crest ablation between stages 8 and 9 resulted in diminished trigeminal ganglia and absence of corneal innervation. Ablation of placode after stage 11 resulted in loss of the ophthalmic branch of the trigeminal ganglion and reduced corneal innervation. Noninnervated corneas still became transparent. These results indicate for the first time that although both neural crest and placode contribute to the trigeminal ganglion, corneal innervation is entirely neural crest-derived. Nonetheless, proper corneal innervation requires presence of both cell types in the embryonic trigeminal ganglion. Also, complete lack of innervation has no discernible effect on development of corneal transparency or cell densities.  相似文献   

19.
20.
张岩 《生命科学》2009,(5):679-689
造血干细胞(hematopoietic stem cell,HSC)是目前研究方法最为多样、研究技术手段最为成熟的一类组织干细胞,并且已经被成功运用于临床上对白血病以及先天性免疫缺陷等疾病的治疗。近年来,通过对一系列“转基因”与“基因敲除”小鼠模型的分析,人们对造血干细胞在胚胎早期发育过程中的发生与起源、造血干细胞“自我更新”与“定向分化”的调节机制、骨髓中造血干细胞的微环境(niche)对造血干细胞功能维持的调控,以及造血干细胞与白血病干细胞之间的相互关系等诸多方面都取得了很大的进展。如何实现造血干细胞的体外长期培养与扩增,实现胚胎干细胞(embryonic stem cell,ESC)或诱导多能干细胞(induced pluripotent stem cell,iPS细胞)向造血干细胞进行有效的定向分化,以及探索造血干细胞在病理状态(如癌症、贫血、衰老等)或应激状态下(如炎症与感染、组织损伤、代谢异常等)的功能变化,都将会是今后造血干细胞研究的重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号