首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

2.
Proteins from leukocytes were investigated for their ability to interact with ceruloplasmin (Cp), a copper-containing glycoprotein of human plasma. Extract from leukocytes was subjected to affinity chromatography on Cp-Sepharose, after which proteins were eluted from the resin with 0.5 M NaCl in Tris-HCl, pH 7.4. SDS-PAGE of the eluate revealed protein bands with molecular weights 78, 57, 40, 30, 16, and 12 kD. Among these, Western blotting detected myeloperoxidase (57, 40, and 12 kD) and lactoferrin (78 kD). Also, the 30-kD component had a sequence (1)I-(2)I/V-(3)G-(4)G-(5)R/H at the N-terminus that is likely to indicate the presence of neutrophilic elastase, cathepsin G, proteinase 3, and azurocidin (CAP 37) - all from the family of serprocidins. Mass spectrometry of tryptic fragments indicated the presence of the 16-kD eosinophilic cationic protein (seven peptides), 27-kD cathepsin G (eleven peptides), 27-kD azurocidin (eight peptides), 29-kD neutrophilic elastase (seven peptides), and 27-kD proteinase 3 (six peptides). Myeloperoxidase was represented by 57-, 40-, and 12-kD fragments (thirteen, ten, and four peptides, respectively). Thus, interaction with Cp of five cationic proteins, i.e. of eosinophilic cationic protein, cathepsin G, neutrophilic elastase, proteinase 3, and azurocidin is reported for the first time.  相似文献   

3.
1. The specificity of cathepsin G, a neutral proteinase from human spleen, was examined by use of low-molecular-weight substrates. The enzyme was found to hydrolyse several synthetic substrates also hydrolysed by chymotrypsin, but with different kinetic constants. 2. Maximal activity against benzoyl-DL-phenylalanine 2-naphthol ester and azo-casein was in the range pH 7.5-8.0. 3. The sensitivity of cathepsin G to the action of potential inhibitors was determined, and compared with those of bovine chymotrypsin and subtilisin. Cathepsin G showed the characteristics of a serine proteinase, but was less affected by the chloromethyl ketone of tosylphenylalanine than was chymotrypsin. 4. A rabbit anti-(human cathepsin G) serum was raised, and precipitin lines formed in agarose gel were stained for activity of the enzyme. 5. Cathepsin G was shown to be immunologically identical with the chymotrypsin-like enzyme of the azurophil granules of the neutrophil granulocytes.  相似文献   

4.
A simple and rapid procedure is described for the separation of the human leucocyte enzymes alanine aminopeptidase, cathepsin G, collagenase, elastase and myeloperoxidase. The enzymes are prepared from leucocytes, obtained from buffy coat, by repeated extraction with buffer A(1 M salt concentration). The pooled extracts are successively subjected to batch adsorption on concanavalin A-Sepharose, gel filtration on Sephacryl S-300, affinity chromatography on collagen-Sepharose 4-B, batch adsorption on CM-Sephadex C-50 and adsorption chromatography on hydroxyapatite. The yields of the isolated enzymes of a typical preparation are 47% alanine aminopeptidase, 9% cathepsin G, 90% latent and active collagenase, 23% elastase and approximately 100% myeloperoxidase with respect to the pooled extracts. The cathepsin G, collagenase and elastase preparations are essentially free from other proteolytic enzymes and may be used without further purifications.  相似文献   

5.
The granule proteases of human neutrophils are thought to be responsible for the connective tissue destruction associated with certain inflammatory diseases. Using a model system for the degradation of a macromolecular connective tissue substrate, purified neutrophil elastase and cathepsin G were both individually able to degrade cartilage matrix proteoglycan and this degradation was blocked by the appropriate specific inhibitors. Neutrophil granule lysate also produced cartilage matrix degradation but little inhibition of degradation occurred when either elastase or cathepsin G inhibitor was used alone. However, a combination of elastase and cathepsin G inhibitors each at 100 microM or each at 10 microM blocked cartilage matrix degradation by 89% +/- 1 and 65% +/- 9 (mean +/- SEM, n = 3), respectively. The magnitude of the cartilage degradation mediated by neutrophil lysate, and its sensitivity to specific inhibitors, was reproduced using purified elastase and cathepsin G at the concentrations at which they are present in neutrophil lysate. Human neutrophils stimulated with opsonized zymosan degraded cartilage matrix in a dose-dependent manner in the presence of serum antiproteases. Supernatants from stimulated neutrophils cultured in the presence of serum did not degrade cartilage matrix, indicating that neutrophil mediated degradation in the presence of serum was confined to the protected subjacent region between the inflammatory cell and the substratum. A combination of elastase and cathepsin G inhibitors each at 500 microM or each at 100 microM blocked subjacent cartilage matrix degradation by stimulated human neutrophils by 91% +/- 3 and 54% +/- 8 (mean +/- SEM, n = 5), respectively, whereas either the elastase or cathepsin G inhibitor alone was much less effective. These studies demonstrate that neutrophil-mediated cartilage matrix degradation is produced primarily by elastase and cathepsin G. Furthermore, these results support the hypothesis that inflammatory neutrophils form zones of close contact with substratum that exclude serum antiproteases and that this subjacent degradation of cartilage matrix by stimulated neutrophils can be blocked by a combination of synthetic elastase and cathepsin G inhibitors.  相似文献   

6.
Previous studies have established that mature neutrophils from the peritoneal cavity, blood, and bone marrow of beige (Chédiak-Higashi syndrome) mice essentially lack activities of two lysosomal proteinases: elastase and cathepsin G. There are, however, significant levels of each enzyme in early neutrophil precursors in bone marrow. In the present experiments, it was found that the addition of extracts from mature beige neutrophils to extracts of normal neutrophils or to purified human neutrophil elastase and cathepsin G resulted in a significant inhibition of elastase and cathepsin G G activities. 125I-Labeled human neutrophil elastase formed high molecular mass complexes at 64 and 52 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis when added to beige neutrophil extracts. The molecular masses of the inhibitor-125I-elastase complexes suggested that the molecular masses of the inhibitors are approximately 36 and 24 kDa, respectively. These results were confirmed by gel filtration on Superose 12 under nondenaturing conditions. Cathepsin G was inhibited only by the 36-kDa component. The inhibitors formed a covalent complex with the active sites of elastase and cathepsin G. No inhibitory activity was present in mature neutrophil extracts of genetically normal mice or in extracts of bone marrow of beige mice. These results thus represent an unusual example of an enzyme deficiency state caused by the presence of excess inhibitors. Inactivation of neutrophil elastase and cathepsin G in mature circulating and tissue neutrophils may contribute to the increased susceptibility of Chédiak-Higashi patients to infection.  相似文献   

7.
Human mast cells can be divided into two subsets based on serine proteinase composition: a subset that contains the serine proteinases tryptase and chymase (MCTC), and a subset that contains only tryptase (MCT). In this study we examined both types of mast cells for two additional proteinases, cathepsin G and elastase, which are the major serine proteinases of neutrophils. Because human mast cell chymase and cathepsin G are both chymotrypsin-like proteinases, the properties of these enzymes were further defined to confirm their distinctiveness. Comparison of their N-terminal sequences showed 30% nonidentity over the first 35 amino acids, and comparison of their amino acid compositions demonstrated a marked difference in their Arg/Lys ratios, which was approximately 1 for chymase and 10 for cathepsin G. Endoglycosidase F treatment increased the electrophoretic mobility of chymase on SDS gels, indicating significant N-linked carbohydrate on chymase; no effect was observed on cathepsin G. Immunoprecipitation and immunoblotting with specific antisera to each proteinase revealed little, if any, detectable cross-reactivity. Immunocytochemical studies showed selective labelling of MCTC type mast cells by cathepsin G antiserum in sections of human skin, lung, and bowel. No labeling of mast cells by elastase antiserum was detected in the same tissues, or in dispersed mast cells from lung and skin. A protein cross-reactive with cathepsin G was identified in extracts of human skin mast cells by immunoblot analysis. This protein had a slightly higher Mr (30,000) than the predominant form of neutrophil cathepsin G (Mr 28,000), and could not be separated from chymase (Mr 30,000) by SDS gel electrophoresis because of the size similarity. Using casein, a protein substrate hydrolyzed at comparable rates by chymase and cathepsin G, it was shown that about 30% of the caseinolytic activity in mast cell extracts was sensitive to inhibitors of cathepsin G that had no effect on chymase. Hydrolytic activity characteristic of elastase was not detected in these extracts. These studies indicate that human MCTC mast cells may contain two different chymotrypsin-like proteinases: chymase and a proteinase more closely related to cathepsin G, both of which are undetectable in MCT mast cells. Neutrophil elastase, on the other hand, was not detected in human mast cells by our procedures.  相似文献   

8.
A procedure is described which permits the rapid isolation of large amounts of elastase and cathepsin G from purulent sputum. This procedure involves: (1) digestion of sputum with DNase, (2) extraction of the insoluble residue that remains with 1 M NaCl, pH 8, (3) affinity chromatography on Sepharose-bound Trasylol, and (4) separation of the two enzymes by chromatography on CM-Sephadex. Starting with 500 g of sputum it was possible to isolate 175 mg of each of these two enzymes within 7 to 10 days. Active site titration indicated both enzymes to be at least 97% pure. Disc gel electrophoresis in the presence and absence of SDS and amino acid sequence of the N-terminal region support the conclusion that the elastase and cathepsin G isolated from sputum a re identical to the same enzymes isolated directly from the leukocytes of human blood.  相似文献   

9.
A procedure is described which permits the rapid isolation of large amounts of elastase and cathepsin G from purulent sputum. This procedure involves: (1) digestion of sputum with DNase, (2) extraction of the insoluble residue that remains with 1 M NaCl, pH 8, (3) affinity chromatography on Sepharose-bound Trasylol, and (4) separation of the two enzymes by chromatogrphy on CM-Sephadex. Starting with 500 g of sputum it was possible to isolate 175 mg of each of these two enzymes within 7 to 10 days. Active site titration indicated both enzymes to be at least 97% pure. Disc gel electrophoresis in the presence and absence of SDS and amino acid sequence of the N-terminal region support the conclusion that the elastase and cathepsin G isolated from sputum are identical to the same enzymes isolated directly from the leukocytes of human blood.  相似文献   

10.
The degradation of human lung elastin by neutrophil proteinases   总被引:13,自引:0,他引:13  
Human lung elastin has been isolated by both a degradative and nondegradative procedure and the products obtained found to have amino acid compositions comparable to published results. These elastin preparations, when utilized as substrates for various mammalian proteinases, were solubilized by porcine elastase at a rate six times faster than human leukocyte elastase. Leukocyte cathepsin G also solubilized lung elastin but only at 12% of the rate of the leukocyte elastase. In all cases the elastin prepared by nondegradative techniques proved to be the best substrate in these studies. The differences in the rate of digestion of elastin of the two elastolytic proteinases was readily attributed to the specificity differences of each enzyme as judged by carboxyterminal analysis of solubilized elastin peptides. The plasma proteinase inhibitors, alpha-1-proteinase inhibitor and alpha-2-macroglobulin abolished the elastolytic activity of both leukocyte enzymes, while alpha-1-antichymotrypsin specifically inactivated cathespsin G. Two synthetic inhibitors, Me-O-Suc-Ala-Ala-Pro-Val-CH2Cl (for elastase and Z-Gly-Leu-Phe-CH2Cl (for cathepsin G) were equally effective in abolishing the elastolytic activity of the two neutrophil enzymes. However, inhibition of leukocyte elastase by alpha-1-proteinase inhibitor was significantly suppressed if the enzyme was preincubated with elastin prior to addition of the inhibitor.  相似文献   

11.
Human neutrophil cathepsin G from normal donors has been purified 82-fold using an isolation procedure which included sequential sodium chloride extraction, Aprotonin-Sepharose affinity chromatography, CM-cellulose ion-exchange chromatography, and AcA44 gel filtration chromatography. The inclusion of this last purification step was crucial for separating inactive lower molecular weight species from the active forms of neutrophil cathepsin G and resulted in a higher specific activity of the final preparation. SDS polyacrylamide gradient gel electrophoresis of the purified reduced protein demonstrated three discrete polypeptides of Mr 31,000, 30,000, and 29,500. Peptide analysis of tryptic digests indicated that these three polypeptides are structurally related to each other and represent microheterogeneity of the purified protein. The cathepsin G peptide maps were distinctly different from the peptide maps of neutrophil elastase. The apparent isoelectric points of these forms as determined by two-dimensional electrophoresis was approximately 8.0. Utilizing microsequencing techniques, the first 25 residues of normal neutrophil cathepsin G have been determined and shown to be identical (except for residue 11) with the sequence of 21 residues of cathepsin G isolated from leukemic myeloid cells. A high degree of homology was found when the amino-terminal regions of neutrophil cathepsin G, rat mast cell protease II (65%) and two human serine proteinases, factor D (52%) and neutrophil elastase (48%), were compared. A precipitating monospecific antiserum to cathepsin G was produced by repeated immunizations of guinea pigs. This antiserum has been used in immunoblotting experiments to demonstrate that the intracellular form(s) of this enzyme is the same approximate Mr as the purified enzyme, and to develop a solid-phase radioimmunoassay for measuring neutrophil cathepsin G in the range 5-50 ng/ml.  相似文献   

12.
Preparative isoelectrofocusing used for fractionating the whole human granulocyte lysate serine proteinases revealed multiple forms of elastase, cathepsin G, kininogenase, human granulocytes plasminogen activator (pI 6.2-10.75). Kinetic characteristics of their substrate specificity were also obtained. It is shown that serine kininogenase of human granulocytes is not identical with elastase as it had been supposed before, it is of trypsin-like nature and is identical with plasminogen activator of these cells. The results obtained reveal new aspects in comprehension of the role of the granulocyte plasminogen activator in development of the inflammatory reaction. It is found that acid-stable proteinase inhibitors formed from blood plasma inter-alpha-inhibitor of trypsin, have an inhibitory effect on the granulocyte plasminogen activator, that supports an assumption on the anti-inflammatory function of these inhibitors.  相似文献   

13.
Two fluorogenic derivatives of amino acids are proposed as substrates for the purpose of enzymatic assay: N-benzyloxycarbonyl-phenylalanine-4-methyl umbelliferyl ester (substrate-1) and tert-butyloxycarbonyl-alanine-4-methyl-umbelliferyl ester (substrate-II). Chymotrypsin-like (hydrolysis of substrate-1), elastase-like (hydrolysis of substrate-II) esterase activity of bovine pancreatic chymotrypsin, activities of cathepsin G and elastase from human, porcine and rat neutrophils and esterase activity of human, porcine and rat serum were assayed. Differences in the level of chymotrypsin-like and elastase-like activities of human, porcine and rat serum were established. Activities of purified elastase and cathepsin G from human and animal neutrophils were shown to have no significant distinctions.  相似文献   

14.
trans-4-Ethoxycarbonyl-3-ethyl-1-(4-nitrophenyl-sulfonyl)-azetidin -3-one described by Firestone et al. (1990, Tetrahedron 46, 2255) as an inhibitor of human leucocyte elastase (HLE) displayed potent, time-dependent inhibition of both HLE and human cathepsin G (Cat-G). The cis-isomer was 7- and 180-fold less active, respectively. The mechanism likely involves opening of the beta-lactam ring by the active site serine to form an acyl-enzyme intermediate(s). This intermediate partitions with ratios of 4:1 between turnover of the inhibitor and formation of relatively stable enzyme-inhibitor complexes from both enzymes. The final HLE-inhibitor complex reactivated with a half-life of 48 h at 25 degrees C and was 16-fold more stable than the Cat-G-inhibitor complex. The stability of the acyl-enzymes supports a "double hit" chemical mechanism involving both serine acylation and alkylation of the histidine. These observations suggest that beta-lactams may be developed as a class of serine protease inhibitors.  相似文献   

15.
Bronchial leucocyte proteinase inhibitor (BLPI) is an 11 000 Mr protein found in human mucous secretions. This inhibitor apparently controls the serine proteinases elastase and cathepsin G, released from extravascular polymorphonuclear leucocytes. A simple, single-step chromatographic procedure for the isolation of BLPI based on its affinity for chymotrypsin was developed. The purified inhibitor was homogeneous by electrophoresis and gel filtration. Amino acid analyses were in close agreement with previous reports, and showed BLPI to be rich in proline and cystine, but lacking histidine. We have further characterized the role of BLPI with respect to human leucocyte elastase and cathepsin G by close examination of the kinetic parameters. Additionally, we have determined the kinetics of association (kon) and dissociation (koff) for BLPI with bovine trypsin and chymotrypsin. Equilibrium dissociation constants (Ki) of 1.87 X 10(-10) M, 4.18 X 10(-9) M, 8.28 X 10(-9) M and 2.63 X 10(-8) M were obtained for human leucocyte elastase, cathepsin G, bovine trypsin and chymotrypsin, respectively. These results are discussed with respect to BLPI's possible function in vivo and its role relative to other inhibitors in bronchial secretions.  相似文献   

16.
Covalent binding of C3 fragments to U937 cell membranes involved a cell surface-associated proteolytic activity. Two proteases able to cleave C3 were purified from U937 plasma membranes. Purification involved solubilization of the membranes and ion exchange chromatography. One of the purified proteases was identified as elastase, based upon a substrate specificity for benzyloxycarbonylalanine-o-nitrophenyl ester and complete inhibition by elastatinal and methoxysuccinyl-alanyl-alanyl-prolyl-valyl-chloromethyl-ketone. The other protease (m.w. 28,000) is cathepsin G, as deduced from the amino acid composition, the amino-terminal sequence, and the substrate specificity for succinyl-alanyl-alanyl-phenylalanine-p-nitroanilide. These two lysosomal proteases are present on the U937 cell surface, as confirmed by immunofluorescence analysis. Plasma membrane elastase and cathepsin G from U937 cells cleave C3 into C3a- and C3b-like fragments; further incubation leads to C3c- and C3dg-like fragments, as judged from SDS-PAGE analysis of the digests. Sequencing of the C3b-like fragment purified by reverse phase chromatography indicates that initial cleavage of C3 by purified cathepsin G occurs at two positions in the amino-terminal part of the alpha-chain, at a Arg-Ser bond located between residues 748 and 749 and at a Leu-Asp bond between residues 751 and 752. These proteases are, thus, able to generate, on the U937 surface, active fragments of C3, which are likely to be involved in cell-protein and cell-cell interactions.  相似文献   

17.
C Boudier  M Cadène  J G Bieth 《Biochemistry》1999,38(26):8451-8457
Oxidation of mucus proteinase inhibitor (MPI) transforms Met73, the P'1 residue of its active center into methionine sulfoxide and lowers its affinity for neutrophil elastase [Boudier, C., and Bieth, J. G. (1994) Biochem. J. 303, 61-68]. Here, we show that the oxidized inhibitor has also a decreased affinity for neutrophil cathepsin G and pancreatic chymotrypsin. The Ki of the oxidized MPI-cathepsin G complex (1.2 microM) is probably too high to be compatible with significant inhibition of cathepsin G in inflammatory lung secretions. Stopped-flow kinetics shows that, within the inhibitor concentration range used, the mechanism of inhibition of cathepsin G and chymotrypsin by oxidized MPI is consistent with a one-step reaction, [equation in text] whereas the inhibition of elastase takes place in two steps, [equation in text]. Heparin, which accelerates the inhibition of the three proteinases by native MPI, also favors their interaction with oxidized MPI. Flow calorimetry shows that heparin binds oxidized MPI with Kd, Delta H degrees, and Delta S degrees values close to those reported for native MPI. In the presence of heparin, oxidized MPI inhibits cathepsin G via a two-step reaction characterized by Ki = 0.22 microM, k2 = 0.1 s-1, k-2 = 0.023 s-1, and Ki = 42 nM. Under these conditions, in vivo inhibition of cathepsin G is again possible. Heparin also improves the inhibition of chymotrypsin and elastase by oxidized MPI by increasing their kass or k2/Ki and decreasing their Ki. Our data suggest that oxidation of MPI during chronic bronchitis may lead to cathepsin G-mediated lung tissue degradation and that heparin may be a useful adjuvant of MPI-based therapy of acute lung inflammation in cystic fibrosis.  相似文献   

18.
We used antibodies to human leukocyte ("neutrophil") elastase and cathepsin G to localize the corresponding antigens in human neutrophils, monocytes, and alveolar macrophages by immunohistochemistry. Furthermore, we combined immunogold localization with enzyme histochemistry to localize proteinase antigens and endogenous peroxidase activity in the same sections. As expected, all neutrophils contained both elastase and cathepsin G, and the proteinases localized to granules with peroxidase activity. In contrast, marked heterogeneity in monocyte staining for elastase, cathepsin G, and endogenous peroxidase was found. Sixty percent or more were unstained, while the remainder varied greatly in staining intensity. The elastase and cathepsin G in monocytes were localized by immunoelectron microscopy, combined with histochemistry, to cytoplasmic granules which had peroxidase activity. Alveolar macrophages were unstained. Therefore, a subpopulation of peripheral blood monocytes contains leukocyte elastase and cathepsin G in a cell compartment from which these enzymes may potentially be released into the extracellular space. The occurrence of peroxidase and neutral proteinases in the same granules in monocytes could permit the H2O2-myeloperoxidase-halide system and the neutral proteinases to act in concert in such functions as microbe killing and extracellular proteolysis.  相似文献   

19.
Various kinds of peptide fragments related to eglin c were prepared by the conventional solution method and their inhibitory effects on human leukocyte elastase, cathepsin G and alpha-chymotrypsin were examined. Peptide (31-40) inhibited cathepsin G (Ki = 2.3 x 10(-4) M), peptide (41-49) potently inhibited cathepsin G and alpha-chymotrypsin (Ki = 4.2 x 10(-5) M and 2.0 x 10(-5) M, respectively), and peptide (60-63) inhibited leukocyte elastase (Ki = 1.6 x 10(-4) M), whereas, peptide (31-35) weakly inhibited both elastase and cathepsin G (Ki = 2.1 x 10(-3) M and 7.3 x 10(-4) M, respectively).  相似文献   

20.
Neutrophil elastase and cathepsin G are serine proteases that can damage connective tissue and trigger other pathological reactions. Compounds containing a peptide sequence to impart specificity and bearing an alpha-dicarbonyl unit (alpha-diketone or alpha-keto ester) at the carboxy terminus are potent inhibitors of the neutrophil serine proteases (human neutrophil elastase: R-Val-COCH3, Ki = 0.017 microM; R-Val-COOCH3, Ki = 0.002 microM; human neutrophil cathepsin G: R-Phe-COCH3, Ki = 0.8 microM; R-Phe-COOCH3, Ki = 0.44 microM; R = N-(4-[(4-chlorophenyl)sulfonylaminocarbonyl]phenylcarbonyl)+ ++ValylProlyl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号