首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and after hypophyseal or thymic allograft were investigated. Chicken embryos were partially decerebrated at 36–40 h of incubation and on day 12 received a hypophysis or a thymus allograft from 18-day-old donor embryos. The thymuses of normal, sham-operated and partially decerebrate embryos were collected on day 12 and 18. The thymuses of the grafted embryos were collected on day 18. The samples were examined with histological method and tested for the anti-PCNA and anti-CD3 immune-reactions. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-PCNA and anti-CD3 revealed a reduced immunereaction, verified also by statistical analysis. In hypophyseal or grafted embryos, the thymic morphological compartments improved, the anti-PCNA and anti-CD3 immune-reactions recovered much better after the thymic graft, probably due to the thymic growth factors and also by an emigration of thymocytes from the same grafted thymus.Key words: hypophysectomy, hypophyseal and thymic allograft, chicken embryonal thymus, PCNA, CD3 markers.  相似文献   

2.
A 32-bp deletion in CCR5 (CCR5 Delta 32) confers to PBMC resistance to HIV-1 isolates that use CCR5 as a coreceptor. To study this mutation in T cell development, we have screened 571 human thymus tissues for the mutation. We identified 72 thymuses (12.6%) that were heterozygous and 2 (0.35%) that were homozygous for the CCR5 Delta 32 mutation. We found that thymocyte development was normal in both CCR5 Delta 32 heterozygous and homozygous thymuses. In 3% of thymuses we identified a functional polymorphism of CD45RA, in which cortical and medullary thymocytes failed to down-regulate the 200- and 220-kDa CD45RA isoforms during T cell development. Moreover, we found an association of this CD45 functional polymorphism in thymuses with the CCR5 Delta 32 mutation (p = 0.00258). In vitro HIV-1 infection assays with CCR5-using primary isolates demonstrated that thymocytes with the heterozygous CCR5 Delta 32 mutation produced less p24 than did CCR5 wild-type thymocytes. However, the functional CD45RA polymorphism did not alter the susceptibility of thymocytes to HIV-1 infection. Taken together, these data demonstrate association of the CCR5 Delta 32 mutation with a polymorphism in an as yet unknown gene that is responsible for the ability to down-regulate the expression of high m.w. CD45RA isoforms. Although the presence of the CCR5 Delta 32 mutation down-regulates HIV-1 infection of thymocytes, the functional CD45RA polymorphism does not alter the susceptibility of thymocytes to HIV-1 infection in vitro.  相似文献   

3.
We have examined the appearance of thymocytes expressing gamma delta TCR within the developing thymus by using immunohistochemical techniques and flow cytometry in conjunction with the mAb 3A10, which recognizes a determinant associated with the constant region of the delta-chain. gamma delta+ Cells were first detected at day 16 of gestation, attained maximal levels at day 17 of gestation, and declined thereafter. By using the Ulex europeus agglutinin to identify medullary epithelial cells in situ, we observed a striking colocalization of gamma delta+ thymocytes and U. europeus agglutinin-positive medullary epithelial cells during late fetal and neonatal periods of development. In the thymuses of adult mice, gamma delta+ thymocytes were scattered throughout cortical and medullary areas of the thymus and most concentrated in the subcapsular areas of the thymus. Ultrastructural immunohistochemistry confirmed the close association between medullary thymic epithelial cells and gamma delta+ thymocytes in the neonatal thymus and also showed that some TCR-gamma delta molecules were patched to areas of contact with medullary epithelial cells. In contrast to the cellular distribution of either CD3 molecules or the TCR-alpha beta, where extensive intracellular labeling of thymocytes has been observed, cytoplasmic accumulation of delta-chain was not detected.  相似文献   

4.
5.
We have examined infection of the thymus during congenitally acquired chronic lymphocytic choriomeningitis virus (LCMV) infection of mice, a classic model of antigen-specific T-cell tolerance. Our results show that (i) infection starts at the fetal stage and is maintained throughout adulthood, and (ii) this chronic infection of the thymus can be eliminated by transfer of virus-specific cytotoxic T lymphocytes (CTL) that infiltrate the thymus and clear all viral products from both medullary and cortical regions. Elimination of virus from the thymus results in abrogation of tolerance. During the fetal stage, the predominant cell type infected is the earliest precursor of T cells with a surface phenotype of Thy1+ CD4- CD8- J11d+. In the adult thymus, infection is confined primarily to the cortisone-resistant thymocytes present in the medullary region. The infected cells are CD4+ and J11d+. The presence of J11d, a marker usually associated with immature thymocytes, on infected single positive CD4+ "mature" thymocytes is intriguing and suggests that infection by this noncytolytic virus may affect development of T cells. There is minimal infection of the CD8+ medullary thymocytes or of the double positive (CD4+ CD8+) cells present in the cortex. Infection within the cortex is confined to the stromal cells. Interestingly, there is infection of the double negative (CD4- CD8-) thymocytes in the adult thymus, showing that even during adulthood the newly developing T cells are susceptible to infection by LCMV. Virus can be eliminated from the thymuses of these carrier mice by adoptive transfer of medullary region first and then from the thymic cortex. This result clearly shows the need to reevaluate the widely held notion that mature T cells are unable to reenter the thymus. In fact, in our experiments the donor T cells made up to 20 to 30% of the total cells in the thymus at 5 to 7 days after the transfer. The number of donor T cells declined as virus was eliminated from the thymus, and at 1 month posttransfer, the donor T cells were hardly detectable. The results of this study examining the dynamics of viral infection and clearance from the thymus, the primary site of T-cell development, have implications for understanding tolerance induction in chronic viral infections.  相似文献   

6.
This paper describes in vitro and in vivo attempts to deplete the 4- to 8-month-old Xenopus laevis (J strain) thymus of its lymphocyte compartment. Gamma irradiation (2-3000 rad) of the excised thymus, followed by two weeks in organ culture, is effective in removing lymphocytes, but causes drastic reduction in size and loss of normal architecture. In contrast, in vivo whole-body irradiation (3000 rad) and subsequent in situ residence for 8-14 days proves successful in providing a lymphocyte-depleted froglet thymus without loss of cortical and medullary zones. In vivo-irradiated thymuses are about half normal size, lack cortical lymphocytes, but still retain some medullary thymocytes; they show no signs of lymphocyte regeneration when subsequently organ cultured for 2 weeks. Light microscopy of 1 micron, plastic-embedded sections and electron microscopy reveal that a range of thymic stromal cell types are retained and that increased numbers of cysts, mucous and myoid cells are found in the thymus following whole-body irradiation. In vivo-irradiated thymuses are therefore suitable for implantation studies exploring the role of thymic stromal cells in tolerance induction of differentiating T lymphocytes.  相似文献   

7.
Some thymocytes, upon activation via the TCR complex in vitro, undergo apoptotic cell death. In this report, we examine the cell death induced in the thymus after administration of anti-CD3 or anti-TCR antibodies. We found that shortly after antibody injection, cortical thymocytes undergo apoptosis as characterized by morphologic changes and DNA fragmentation. Anti-CD3 administration led to depletion of nearly all CD4+CD8+ thymocytes, and approximately 50% of CD4+CD8- thymocytes. This depletion predominantly affected cells bearing low levels of CD3, although some depletion also occurred among cells expressing intermediate and high levels. Administration of an anti-TCR antibody also induced apoptosis, but affected significantly fewer thymocytes than anti-CD3. This effect was probably not due to different binding affinities for the two antibodies, because both antibodies show similar dose response effects in an in vitro model of activation-induced apoptosis. This work demonstrates that findings on activation-induced apoptosis in vitro can be extended to the in vivo situation, and further, that the activation of cortical thymocytes, in situ, results in apoptosis and removal of the activated cells. The possible relationships between this activation-induced cell death in immature thymocytes and the process of negative selection of autoreactive T cells is discussed.  相似文献   

8.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

9.
The role of lymphostromal complexes in T-cell differentiation is far from elucidated, mainly because a clear association of a particular stromal cell type with a distinct thymocyte subset has never been identified. Using an in vitro system, detecting the adherence of thymocytes to a thymic medullary epithelial cell line (E-5), we showed that the phenotype of these thymocytes was that of cortical type: Thy-1hi, LFA-1+, PNAhi, CD4+CD8+, MEL-14-/lo, IL-2R-, CD3-/lo, and TcR V beta 8-/lo. They were enriched in cells in G2/M at the time of complex formation, showed a higher basal proliferation in culture, and did not respond to PHA, IL-2 and only marginally to Con A. These data show that complex formation with mouse thymic medullary epithelium selects for CD4+CD8+ thymocytes, as shown by the marked decrease in CD4+CD8-/CD4-CD8+ thymocytes, and the incapacity of CD4-CD8- thymocytes to adhere.  相似文献   

10.
Lymphoepithelial complexes known as thymic "nurse" cells (TNC) have been isolated and described in the thymus of several animal species including man. Most of the investigations on TNC have been carried out in enzymatically digested thymuses in which TNC were isolated by differential sedimentation. In the present study we demonstrate TNC in immunohistochemically stained sections of human thymus as ring-shaped cells completely enclosing thymocytes and localized not only in the cortex, but also at the corticomedullary junction where they have not been previously described. TNC expressed epithelial markers [low and high molecular weight keratins identified by 35 beta H11 and 34 beta E12 monoclonal antibodies, a cortical antigen shared with neuroectodermal neoplasms recognized by the GE2 monoclonal antibody, and tissue polypeptide antigen (TPA:B1)], class II histocompatibility antigens (HLA-DR), and thymosin alpha 1. Double staining experiments with the nuclear proliferation-associated antigen Ki-67 and the cortical epithelium marker GE2 showed that most thymocytes enclosed in these cortical TNC were not proliferating. The antigens expressed by TNC indicate that not only cortical, but also medullary epithelial cells are part of the TNC system. The possible role of TNC in the education and maturation of thymocytes is discussed.  相似文献   

11.
 A set of 3000 mouse thymus cDNAs was analyzed by extensive measurement of expression using complex-probe hybridization of DNA arrays ("quantitative differential screening"). The complex probes were initially prepared using total thymus RNA isolated from C57BL/6 wild-type (WT), CD3e- and RAG1-deficient mice. Over 100 clones displaying over- or under-expression by at least a factor of two between WT and knockout (KO) thymuses were further analyzed by measuring hybridization signatures with probes from a wide range of KO thymuses, cell types, organs, and embryonic thymuses. A restricted set of clones was selected by virtue of their expression spectra (modulation in KO thymuses and thymocytes, lymphoid cell specificity, and differential expression during embryonic thymus development), sequenced at one extremity, and compared to sequences in databases. Clones corresponding to previously identified genes (e.g., Tcrβ, Tcf1 or CD25) showed expression patterns that were consistent with existing data. Ten distinct clones corresponding to new genes were subjected to further study: Northern blot hybridization, in situ hybridization on thymus sections, and partial or complete mRNA sequence determination. Among these genes, we report a new serine peptidase highly expressed in cortical epithelial cells that we have named thymus-specific serine peptidase (TSSP), and an acidic protein expressed in thymocytes and of unknown function that we have named thymus-expressed acidic protein (TEAP). This approach identifies new molecules likely to be involved in thymocyte differentiation and function. Received: 3 June 1999 / Revised: 3 August 1999  相似文献   

12.
The roles that thymus cytokines might play in regulating thymic atrophy are not known. Reversing thymic atrophy is important for immune reconstitution in adults. We have studied cytokine mRNA steady-state levels in 45 normal human (aged 3 days to 78 years) and 34 myasthenia gravis thymuses (aged 4 to 75 years) during aging, and correlated cytokine mRNA levels with thymic signal joint (sj) TCR delta excision circle (TREC) levels, a molecular marker for active thymopoiesis. LIF, oncostatin M (OSM), IL-6, M-CSF, and stem cell factor (SCF) mRNA were elevated in normal and myasthenia gravis-aged thymuses, and correlated with decreased levels of thymopoiesis, as determined by either decreased keratin-positive thymic epithelial space or decreased thymic sjTRECs. IL-7 is a key cytokine required during the early stages of thymocyte development. Interestingly, IL-7 mRNA expression did not fall with aging in either normal or myasthenia gravis thymuses. In vivo administration of LIF, OSM, IL-6, or SCF, but not M-CSF, i.p. to mice over 3 days induced thymic atrophy with loss of CD4+, CD8+ cortical thymocytes. Taken together, these data suggest a role for thymic cytokines in the process of thymic atrophy.  相似文献   

13.
The nonclassical MHC class I molecule MHC class I-related chain A (MICA) interacts with the NKG2D receptor expressed at the surface of most peripheral CD8 T cells, gammadelta T cells, and NK cells. We investigated the role of MICA-NKG2D interactions in the selection or maturation of the T cell repertoire within the thymus using MICA tetramers and anti-MICA mAbs. MICA tetramers identified a small population of late stage CD8 single-positive, CD45RA(+) CD62L(+) CCR7(+) CD69(-) thymocytes, a phenotype compatible with that of fully mature CD8(+) cells ready to emigrate to the periphery as naive cells. MICA molecules were expressed in the outer layer of Hassal's corpuscles within the medulla of normal thymus. In thymomas, an overexpression of MICA in cortical and medullar epithelial cells was observed. This was associated with a decreased percentage of NKG2D-positive thymocytes, which expressed a less mature phenotype than in normal thymus. These results indicate that CD8(+) thymocytes up-regulate NKG2D as they complete their developmental program before leaving the thymic medulla to seed the periphery, and identify NKG2D as a potential regulator of the developmental processes in T cells that are essential for immune homeostasis.  相似文献   

14.
The neonatal period is marked by the impairment of the major components of both innate and adaptive immunity. We report a severe depletion of cortical CD4+CD8+ double-positive thymocytes in the human neonatal thymus. This drastic reduction in immature double-positive cells, largely provoked by an increased rate of cell death, could be observed as early as 1 day after birth, delaying the recovery of the normal proportion of this thymocyte subset until the end of the first month of postnatal life. Serum cortisol levels were not increased in newborn donors, indicating that the neonatal thymic involution is a physiological rather than a stress-associated pathological event occurring in the perinatal period. Newborn thymuses also showed increased proportions of both primitive CD34+CD1- precursor cells and mature TCRalphabetahighCD69-CD1-CD45RO+/RAdull and CD45ROdull/RA+ cells, which presumably correspond to recirculating T lymphocytes into the thymus. A notable reinforcement of the subcapsular epithelial cell layer as well as an increase in the intralobular extracellular matrix network accompanied modifications in the thymocyte population. Additionally neonatal thymic dendritic cells were found to be more effective than dendritic cells isolated from children's thymuses at stimulating proliferative responses in allogeneic T cells. All these findings can account for several alterations affecting the peripheral pool of T lymphocytes in the perinatal period.  相似文献   

15.
Prostaglandins (PGs) are lipid-derived mediators of rapid and localized cellular responses. Given the role of PG in supporting thymic T cell development, we investigated the expression of the PG synthases, also known as cyclooxygenases (COX)-1 and -2, in the biosynthesis of PGs in thymic stromal cell lines. The predominant isozyme expressed in cortical thymic epithelial cells was COX-1, while COX-2 predominated in the medulla. IFN-gamma up-regulated expression and activity of COX-2 in medullary cells, in which COX-2 was expressed constitutively. In contrast, IFN-gamma down-regulated COX-1 activity, but not expression, in cortical cells. Stromal cells support T cell development in the thymus, although the mediators of this effect are unknown. Selective inhibition of COX-2, but not COX-1, blocked the adhesion of CD4+CD8+ and CD4+CD8- thymocytes to medullary cell lines. No effect of the inhibitors was observed on the interactions of thymocytes with cortical epithelial lines. These data further support the differential regulation of COX-1 and COX-2 expression and function in thymic stromal cells. PGs produced by COX-2 in the medullary thymic stroma may regulate the development of thymocytes by modulating their interaction with stromal cells.  相似文献   

16.
Previous work has suggested that the generative lineage within the human thymus can be defined by the selective expression of CD45 isoforms and is CD45RO- and predominantly CD45RA+. In order to physically localize these cells we have stained frozen sections of human thymus with antibodies to CD45RO (p180), and CD45RA (p205/P220), as well as with CD1 and HLA class I to define cortical and medullary areas, respectively. In the cortex, 70 to 90% of thymocytes were CD45RO+, whereas only 0.5% expressed CD45RA. Medullary cells were 30% CD45RO+, 29% CD45RA+; approximately 40% did not express detectable levels of either isoform but did express CD45 common determinants. To assess the degree of proliferation of cells expressing CD45 isoforms, we stained adjacent sections, or used double staining, with Ki67, an antibody that detects a nuclear Ag on proliferating cells. We found that CD45RA+ thymocytes are predominantly a resting medullary population with a small component in cell cycle, consistent with our analysis of human thymocytes by immunofluorescence, and with data in murine systems defining the generative lineage. To confirm that the CD1- or low, CD45RO-CD45RA+ thymocytes defined by immunofluorescence analysis were likely to have a medullary location, we analyzed the CD4/CD8 subset distribution of CD1-cells. From 80 to 90% of CD1-thymocytes are CD4+ or CD8+ single positives or CD-8- double negatives. CD1-thymocytes also include 12 to 14% CD4+8+ cells with a probable medullary location. A similar analysis of lymphocytes expressing a high density of HLA class I, which have a medullary location, confirmed the existence of CD4+8+ thymocytes in the medulla. Purified CD3-4-8- cells, previously shown to be CD1-CD45RA+, were also shown to bear a high density of HLA class I, indicating a medullary location. Correlative localization of a panel of Ag thus supports the argument for a medullary location of the thymic generative lineage.  相似文献   

17.
In order to address the role of CD4 and CD8 Ag in the process of positive selection in the thymus, antibodies against these molecules, which do not result in the elimination of mature lymph node T cells, were injected in vivo. The results indicate that even long-term injection of nondepleting anti-CD4 and anti-CD8 antibodies does not cause the loss of CD4 or CD8 positive lymph node cells, but it completely blocks the development of the corresponding subpopulation of mature thymocytes. Thus, it appears that the interaction of the CD4 and CD8 accessory molecules on developing thymocytes with a ligand in the thymic environment (probably MHC Ag) is necessary for the positive selection of thymocytes into the appropriate T cell lineage.  相似文献   

18.
Experiments were undertaken to test if thymocytes of "mature" or "medullary" phenotype were restricted to the medullary area of the thymus. A calculation based on direct cell counts on serial sections indicated that 11.5% of adult male CBA thymic lymphoid cells were within the medullary zone. Since only 3-4% of thymocytes were cortisone resistant, the majority of thymocytes within the medulla were, like cortical thymocytes, cortisone sensitive. A series of cell surface antigenic markers, used alone or in pairs, suggested that 13-15% of thymocytes were of medullary phenotype, somewhat more than the number of thymocytes actually present in the medulla. However, much of this discrepancy could be explained by differential death of cortical cells during isolation and staining, and by the existence in the cortex of a subpopulation of early blast cells which shared some, but not all markers with medullary thymocytes. A direct test for mature or medullary phenotype cells in the cortex involved selective transcapsular labeling of outer-cortical cells with fluorescent dyes, followed by multiparameter immunofluorescent analysis of the 10% labeled population. Outer-cortical thymocytes included some cells (mainly early blasts) sharing some markers with medullary thymocytes, but very few (less than 1%) of these cells expressed all the characteristic "mature" markers. Limit-dilution precursor frequency studies showed the level of functional cells in the outer cortex was extremely low. The overall conclusion was that the vast majority of cells of complete "mature" phenotype are confined to the thymic medulla. These findings favor the view that thymus migrants originate from the thymic medulla, but do not exclude a cortical origin. The results also illustrate the need for multiparameter analysis to distinguish medullary thymocytes from early blast cells.  相似文献   

19.
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments.  相似文献   

20.
R C Nowinski  T Doyle 《Cell》1977,12(2):341-353
Thymus cells of preleukemic and leukemic AKR mice express on their cell surface elevated levels of antigens associated with the murine leukemia virus (MuLV) proteins gp70 and p30. The gp70 antigenicity is contained in a 70,000 dalton polypeptide that corresponds to the viral envelope protein, while the p30 antigenicity is contained in two polypeptides of 85,000 and 95,000 daltons that correspond to glycosylated forms of the polyprotein product of the gag gene.The expression of these viral coded proteins on the cell surface of thymocytes varies both quantitatively with the age of the mouse and qualitatively with the cellular populations that express these antigens. Four discrete stages in the leukemic pathway can be identified. First, low numbers of cells from the thymuses of young (2 month old) AKR mice express p30 (<0.25%) and gp70 (2–7%) antigens. Expression of gp70 antigen is restricted to large cells in the subcapsular region of the thymus. Second, thymuses of 6 month old AKR mice show a selective depletion of cortical thymocytes with a concomitant increase in the medullary region of the thymus. Thymus cells of these mice contain elevated numbers of cells that express an increased concentration of p30 and gp70 antigens. Viral antigens are found on the surface of all large cells of the subcapsular region of the thymus, and in variable numbers (2–85%) of small cells of the cortical and medullary regions. Third, the thymuses of some 8 month old AKR mice demonstrate selective hypertrophy of a single thymic lobe. The enlarged lobe contains a population of cells that are intermediate in size between the small cortical cells and leukemic blast cells. This new cell population expresses elevated levels of p30 and gp70 viral antigens. These cells, which are not leukemic (since transfer of high numbers of these cells to syngeneic hosts does not induce transplantable disease), may represent preleukemic thymocytes. Fourth, thymuses of mice with overt leukemia contain primarily leukemic blast cells. These cells express extremely high levels of viral antigens on their cell surfaces, and upon transfer of these cells to syngeneic hosts, they rapidly induce transplantable leukemias.The increased expression of viral antigens on the surface of thymus cells is correlated with an increased production of infectious ecotropic and xenotropic MuLV in the thymus. During aging, the percentage of cells producing ecotropic MuLV increases 10-fold, while the percentage of cells producing xenotropic MuLV increases 100 fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号