首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Kugler 《Histochemistry》1987,87(6):623-625
A lead-salt procedure was used for the cytochemical demonstration of aspartate aminotransferase (AT) in the CA3 of the rat hippocampus. Cytoplasmic- and mitochondrial-AT isoenzymes were demonstrated in different neuronal structures, but not in astrocytes. Of special interest was the localization of cytoplasmic AT in most mossy-fibre boutons. This might indicate that cytoplasmic AT is responsible for the production of releasable glutamate in the glutamatergic/aspartatergic mossy fibre system.  相似文献   

2.
Agonist-induced internalisation of the rat type 1A (AT(1A)) angiotensin II receptor is associated with phosphorylation of a serine/threonine-rich region in its cytoplasmic tail. In yeast, hyperphosphorylation of the alpha-factor pheromone receptor regulates endocytosis of the receptor by facilitating the monoubiquitylation of its cytoplasmic tail on lysine residues. The role of receptor ubiquitylation in AT(1A) receptor internalisation was evaluated by deletion or replacement of lysine residues in its agonist-sensitive serine/threonine-rich region. Expression of such receptor mutants in CHO cells showed that these modifications had no detectable effect on the angiotensin II-induced endocytosis of the AT(1A) receptor. Furthermore, fusion of ubiquitin in-frame to an internalisation-deficient AT(1A) receptor mutant with a truncated carboxyl-terminal tail did not restore the endocytosis of the resulting chimeric receptor. No impairment of receptor internalisation was observed after substitution of all lysine residues in the serine/threonine-rich region at saturating angiotensin II concentrations, where endocytosis occurs by a beta-arrestin and dynamin independent mechanism. Taken together, these data demonstrate that ubiquitylation of the cytoplasmic serine/threonine-rich region of the AT(1A) receptor on lysine residues is not required for its agonist-induced internalisation, and suggest that endocytosis of mammalian G protein-coupled receptors (GPCRs) occurs by a different mechanism than that of yeast GPCRs.  相似文献   

3.
The carboxyl-terminal cytoplasmic domain of the angiotensin II type 1 (AT1) receptor has recently been shown to interact with several classes of cytoplasmic proteins that regulate different aspects of AT1 receptor physiology. Employing yeast two-hybrid screening of a mouse kidney cDNA library with the carboxyl-terminal cytoplasmic domain of the murine AT1a receptor as a bait, we have isolated a novel protein with a predicted molecular mass of 18 kDa, which we have named ATRAP (for AT1 receptor-associated protein). ATRAP interacts specifically with the carboxyl-terminal domain of the AT1a receptor but not with those of angiotensin II type 2 (AT2), m3 muscarinic acetylcholine, bradykinin B2, endothelin B, and beta2-adrenergic receptors. The mRNA of ATRAP was abundantly expressed in kidney, heart, and testis but was poorly expressed in lung, liver, spleen, and brain. The ATRAP-AT1a receptor association was confirmed by affinity chromatography, by specific co-immunoprecipitation of the two proteins, and by fluorescence microscopy, showing co-localization of these proteins in intact cells. Overexpression of ATRAP in COS-7 cells caused a marked inhibition of AT1a receptor-mediated activation of phospholipase C without affecting m3 receptor-mediated activation. In conclusion, we have isolated a novel protein that interacts specifically with the carboxyl-terminal cytoplasmic domain of the AT1a receptor and affects AT1a receptor signaling.  相似文献   

4.
DNA polymerases have been prepared from leukaemic and normal spleens and their fidelity in copying a polyd AT).polyd(AT) template assessed. The leukaemic cytoplasmic DNA polymerases were less accurate than the controls whereas no difference in accuracy was observed in the nuclear DNA polymerases. The preparations of leukaemic cytoplasmic DNA polymerase also contained the enzyme terminal deoxynucleotidyl transferase. When this enzyme was removed by further purification the accuracy of the cytoplasmic DNA polymerases increased to that of the controls.  相似文献   

5.
To identify the proteins that interact and mediate angiotensin II receptor AT2-specific signaling, a random peptide library was screened by yeast-based Two-Hybrid protein-protein interaction assay technique. A peptide that shared significant homology with the amino acids located between the residues Gly-Xaa-Gly-Xaa-Xaa-Gly721 and Lys742, the residues predicted to be important for ATP binding of the ErbB3 and ErbB2 receptors, was identified to be interacting with the AT2 receptor. The interaction between the human ErbB3 receptor and the AT2 receptor was further confirmed using the cytoplasmic domain (amino acids 671-782) of the human ErbB3 receptor. Moreover, an AT2 receptor peptide that spans the amino acids 226-363, (spans the third ICL and carboxy terminal domain) could also interact with the AT2 receptor in a yeast Two-Hybrid protein-protein interaction assay. Studies using mutated and chimeric AT2 receptors showed that replacing the third intracellular loop (ICL) of the AT2 receptor with that of the AT1 abolishes the interaction between the ErbB3 and the AT2 in yeast Two-Hybrid protein-protein interaction assay. Thus the interaction between the AT2 receptor and the ErbB3 receptor seems to require the region spanning the third ICL and carboxy terminus of the AT2 receptor. Since the third ICL of the AT2 receptor is essential for exerting its inhibitory effects on cell growth, possible involvement of this region in the interaction with the cytoplasmic domain of the ErbB3 receptor suggests a novel signaling mechanism for the AT2 receptor mediated inhibition of cell growth. Furthermore, since both the AT2 and the ErbB3 receptors are expressed during fetal development, we propose that the existence of direct interaction between these two receptors may play a role in the regulation of growth during the initial stages of development.  相似文献   

6.
Gorodetsky E  Calkins S  Ahn J  Brooks PJ 《DNA Repair》2007,6(11):1698-1707
The genetic disease ataxia telangiectasia (AT) results from mutations in the ataxia telangiectasia mutated (ATM) gene. AT patients develop a progressive degeneration of cerebellar Purkinje neurons. Surprisingly, while ATM plays a criticial role in the cellular reponse to DNA damage, previous studies have localized ATM to the cytoplasm of rodent and human Purkinje neurons. Here we show that ATM is primarily localized to the nucleus in cerebellar Purkinje neurons in postmortem human brain tissue samples, although some light cytoplasmic ATM staining was also observed. No ATM staining was observed in brain tissue samples from AT patients, verifying the specificity of the antibody. We also found that antibodies against components of the Mre11/Rad50/Nbs1 (MRN) complex showed strong staining in Purkinje cell nuclei. However, while ATM is present in both the nucleoplasm and nucleolus, MRN proteins are excluded from the nucleolus. We also observed very high levels of topoisomerase 1 (TOP1) in the nucleus, and specifically the nucleolus, of human Purkinje neurons. Our results have direct implications for understanding the mechanisms of neurodegeneration in AT and AT-like disorder.  相似文献   

7.
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.  相似文献   

8.
9.
Miura S  Zhang J  Karnik SS 《FEBS letters》2000,470(3):331-335
To explore peptide hormone-induced conformational changes, we attempted to engineer a metal-ion binding site between the cytoplasmic loops CD and EF in the angiotensin II type 1 (AT(1)) receptor. We constructed 12 double and six triple histidine mutant receptors, and tested the ability of each mutant and the wild-type to activate inositol phosphate (IP) production with and without ZnCl(2). Inhibition by ZnCl(2) in the double and triple His mutant receptors was not significant, but these mutations directly decreased the IP production. Systematic analysis of single His mutants demonstrated that the loop CD-mutants displayed 52-74% inhibition of IP production, whereas the loop EF-mutants did not affect IP production. These results indicate that the cytoplasmic loop CD-segment from Tyr(127) to Ile(130) is important for G(q/11) activation by the AT(1) receptor.  相似文献   

10.
The carboxyl-terminal cytoplasmic domain of the angiotensin II type 1 receptor (AT1) is known to interact with several classes of intracellular proteins that may modulate receptor function. Employing yeast two-hybrid screening of a human embryonic kidney cDNA library with the carboxyl-terminal cytoplasmic domain of the AT1 receptor as a bait, we have isolated EP24.15 (EC 3.4.24.15, thimet oligopeptidase) as a potentially interacting protein. EP24.15 is widely distributed and is known to degrade bioactive peptides such as angiotensin I and II and bradykinin. In addition, EP24.15 was previously identified as a putative soluble angiotensin II binding protein. Two-hybrid screening also determined that EP24.15 can interact with the B2 bradykinin receptor. Transient expression of EP24.15 in a porcine kidney epithelial cell line stably expressing full length AT1 and full length B2 followed by affinity chromatography and co-immunoprecipitation confirmed EP24.15 association with both AT1 and B2 receptors. EP24.15 was also co-immunoprecipitated with AT1 and B2 in rat kidney brush border membranes (BBM) and basolateral membranes (BLM). Both AT1 and B2 undergo ligand-induced endocytosis. Analysis of endosomal fractions following immunoprecipitation with AT1 or B2 antibodies detected strong association of EP24.15 with the receptors in both light and heavy endosomal populations. Therefore, the present study indicates that EP24.15 associates with AT1 and B2 receptors both at the plasma membrane and after receptor internalization and suggests a possible mechanism for endosomal disposition of ligand that may facilitate receptor recycling.  相似文献   

11.
Several classes of cytoplasmic proteins have been found to interact specifically with the carboxyl-terminal cytoplasmic region of the angiotensin II type 1 (AT(1)) receptor to regulate different aspects of AT(1) receptor physiology. The murine Angiotensin II Receptor-Associated Protein (Agtrap) is a new member of them. We have recently cloned a new human gene cDNA that codes for a homolog of the murine Agtrap protein from a human fetal brain cDNA library. The deduced polypeptide product of the cDNA is 22 kDa in size, and its DNA and amino acid sequences are 85 and 77% identical to those of the mouse Agtrap gene, respectively. Hence we have named it the human Angiotensin II Receptor-Associated Protein (AGTRAP) gene. The mRNA of AGTRAP was most abundantly expressed in kidney, heart, pancreas and thyroid. Using the yeast two-hybrid screening of a human fetal brain cDNA library, we have identified a new interaction partner of the human AGTRAP protein, RACK1 (Receptor of Activated Protein C Kinase). The AGTRAP-RACK1 interaction was confirmed by GST fusion protein pull-down assays, co-immunoprecipitation and surface plasmon resonance. We suggest that the AGTRAP-RACK1 interaction may help to recruit signaling complex to the AT(1) receptor to affect AT(1) receptor signaling.  相似文献   

12.
Angiotensin II (Ang II) type 1 receptors (AT1Rs) activate tyrosine kinases, including Src. Whether or not tyrosine kinase activation by AT1R occurs independently of heterotrimeric G protein coupling and, if so, the cellular function of such a mechanism are unknown. To address these questions, we used an AT1aR intracellular second loop mutant, which lacks heterotrimeric G protein coupling (AT1a-i2m). Surprisingly, Ang II-induced Src activation was preserved in AT1a-i2m, which was not attenuated by inhibiting protein kinase C and Ca(2+) or by inhibiting Galpha(i) or Galpha(q) in CHO-K1 cells. By contrast, Ang II-induced Src activation was abolished in a C-terminally truncated AT1a-(1--309), where Ang II-induced inositol phosphate response was preserved. Ang II activates ERKs via a Src-Ras-dependent mechanism in AT1a-i2m. ERKs activated by AT1a-i2m phosphorylate their cytoplasmic targets, including p90(RSK), but fail to translocate into the nucleus or to cause cell proliferation. Ang II-induced nuclear translocation of ERKs by wild type AT1aR was inhibited by overexpression of nuclear exportin Crm-1, while that by AT1a-i2m was restored by leptomycin B, an inhibitor of Crm-1. In summary, while Src and ERKs are activated by Ang II even without heterotrimeric G protein coupling, the carboxyl terminus of the AT1 receptor is required for activation of Src. Interestingly, ERKs activated by heterotrimeric G protein-independent mechanisms fail to phosphorylate nuclear targets due to lack of inhibition of Crm-1-induced nuclear export of ERKs. These results suggest that heterotrimeric G protein-dependent and -independent signaling mechanisms play distinct roles in Ang II-mediated cellular responses.  相似文献   

13.
Jackson A  Iwasiow RM  Tiberi M 《FEBS letters》2000,470(2):183-188
To delineate the role of the cytoplasmic tail in the distinct binding and coupling properties of human dopamine D1-like receptors, chimeric receptors were generated in which the entire tail region of wild-type human D1A (or D1) and D1B (or D5) receptors was exchanged. The hD1A-D1BT, but not hD1B-D1AT, receptor expression was dramatically reduced compared with wild-type receptor expression. Swapping the cytoplasmic tail resulted in a full switch of dopamine binding affinity and constitutive activity, while dopamine potency decreased and agonist-mediated maximal activation of adenylyl cyclase increased for both chimeras. Hence, the cytoplasmic tail plays a crucial role in D1-like receptor expression, agonist binding affinity and constitutive activation but regulates in a distinct fashion the formation of D1A and D1B receptor active states upon dopamine binding.  相似文献   

14.
S M Waugh  P S Low 《Biochemistry》1985,24(1):34-39
Hemichromes, the precursors of red cell Heinz bodies, were prepared by treatment of native hemoglobin with phenylhydrazine, and their interaction with the cytoplasmic surface of the human erythrocyte membrane was studied. Binding of hemichromes to leaky red cell ghosts was found to be biphasic, exhibiting both high-affinity and low-affinity sites. The high-affinity sites were shown to be located on the cytoplasmic domain of band 3, since (i) glyceraldehyde-3-phosphate dehydrogenase, a known ligand of band 3, competes with the hemichromes for their binding sites, (ii) removal of the cytoplasmic domain of band 3 by proteolytic cleavage causes loss of the high-affinity sites, and (iii) the isolated cytoplasmic domain of band 3 interacts tightly with hemichromes, rapidly forming a pH-dependent, water-insoluble copolymer upon mixing in aqueous solution. Since the copolymer of hemichromes with the cytoplasmic domain of band 3 was readily isolatable, a partial characterization of its properties was conducted. The copolymer was shown to be of defined stoichiometry, containing approximately 2.5 hemichrome tetramers (or approximately 5 hemichrome dimers) per band 3 dimer, regardless of the ratio of hemichrome:band 3 in the initial reaction solution. The copolymer was found to be of macroscopic dimensions, generating particles which could be easily visualized without use of a microscope. The coprecipitation was also highly selective for hemichromes, since, in mixed solutions with native hemoglobin, only hemichrome was observed in the isolated pellet. Furthermore, no precipitate was ever observed upon mixing the cytoplasmic domain of band 3 with oxyhemoglobin, deoxyhemoglobin, (carbonmonoxy) hemoglobin, or methemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The cytoplasmic domains of the transducing subunits associated with B and T cell antigen receptors contain a common amino acid motif consisting of two precisely spaced Tyr-X-X-Leu/Ile sequences (where X corresponds to a variable residue). Expression of a single copy of this motif suffices to initiate B or T cell activation. The bovine leukaemia virus (BLV) is a B cell lymphotropic retrovirus which causes a non-neoplasic proliferation of B cells. The cytoplasmic domain of the BLV transmembrane envelope glycoprotein, gp30, possesses two overlapping copies of the Tyr-X-X-Leu/Ile-containing motif which could participate in the induction of B cell activation. Similarly, the N-terminal cytoplasmic domain of the latent membrane protein 2A (LMP2A) of the Epstein-Barr virus (EBV) contains a single copy of the Tyr-X-X-Leu/Ile-containing motif which could play a critical role in B cell transformation. To determine whether these two virus-encoded cytoplasmic domains are endowed with signalling functions, we constructed chimeric proteins by replacing the cytoplasmic tail of CD8-alpha with that of either BLV gp30 or EBV LMP2A. We show here that, once separately expressed in B or T cell lines, these chimeras are capable of triggering both calcium responses and cytokine production when cross-linked with an antibody to CD8-alpha. Furthermore, using site-directed mutagenesis, we demonstrated unequivocally that this signalling function may be accounted for by the Tyr-X-X-Leu/Ile motifs they contain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have shown previously that the angiotensin II (Ang II) receptor AT2 reduces the intracellular levels of cGMP in Xenopus oocytes when activated by ligand binding, and the C-terminal cytoplasmic tail of the AT2 acts as a negative regulator of this function. Here we report the effects of mutations in the 2nd and 3rd intracellular loops of AT2 on AT2-mediated cGMP reduction. Mutating the highly conserved DRY motif (D141G-R142G-Y143A) of the 2nd ICL implicated in activating G(alpha) subunit of trimeric G-proteins did not affect AT2-mediated cGMP reduction. Moreover, anti-Gialpha antibody or phosphodiesterase inhibitor IBMX did not inhibit AT2-mediated cGMP reduction, suggesting that Gialpha activation and subsequent phosphodiesterase activation are not involved in this function. In contrast, mutations T250R-R251N and L255F-K256R located in the C-terminus of the 3rd ICL of AT2 retained ligand-binding properties of the wild-type AT2, and its ability to interact with the ErbB3 in yeast two-hybrid assay, but abolished AT2-mediated cGMP reduction. Similarities in the roles of ICLs of AT2 in AT2-mediated cGMP reduction in oocytes, and AT2-mediated SHP1 activation in COS-7 cells, (need of 3rd ICL for both functions and lack of involvement of DRY motif), suggest that the cascade of events in these two signaling mechanisms could be similar, and that an oocyte-specific SHP1-like protein may be involved in AT2-mediated cGMP reduction in these cells.  相似文献   

17.
W G Thomas  L Pipolo  H Qian 《FEBS letters》1999,455(3):367-371
To identify regulators of the type 1A angiotensin II receptor (AT1A), we investigated the interaction of cellular proteins with a fusion protein containing the rat AT1A receptor carboxyl-terminus. An approximately 20 kDa cytoplasmic protein interacted with the fusion protein in a Ca2+-dependent manner and was identified as calmodulin. A control peptide with high affinity for Ca2+/calmodulin and a peptide corresponding to a membrane proximal portion of the AT1A receptor carboxyl-terminus with analogy to known calmodulin-binding sequences were synthesised and tested for calmodulin-binding. Using in vitro binding assays combined with gel shift analysis, we demonstrated the formation of complexes between calmodulin and both peptides, which were Ca2+-dependent and of 1:1 stoichiometry. Affinity gels produced from these peptides also purified calmodulin from cell extracts. These results suggest a novel feedback regulation of the AT1A receptor by Ca2+/calmodulin and identify the membrane proximal region of the carboxyl-terminus as a focal point for interactions important for AT1A receptor function.  相似文献   

18.
The objective of this study was to develop a protocol for ram epididymal sperm preservation that could be applied to wild ruminants for collection and preservation of spermatozoa from dead or hunted animals. Ram testicles collected from abattoirs were used to study the effect of two transportation temperatures viz. ambient temperature (AT) and refrigeration temperature (RT) on the cauda epididymal sperm quality at recovery and during preservation up to 72h at 4°C. For AT the testicles were transported in normal saline in a container (17.9-21.5°C) where as for RT the testicles were transported in an ice-chest (4.9-6°C). The results of the current study revealed that intact acrosome was significantly higher (P<0.01) and other quality parameters like sperm motility, live sperm count, sperm concentration and major sperm abnormalities were also higher (P>0.05) for RT than AT. The mean percent sperm motility for RT and AT was 81.67% and 78.33%, respectively. The corresponding figures were 92.08% and 90.46% for mean live sperm, 98.33% and 90.50% for intact acrosome, 0.50% and 0.33% for major sperm defects. The percent minor abnormality was 79.50% for RT and 77.67% for AT. The most prevalent minor defect was distal cytoplasmic droplet (70-80%). The mean sperm motility for RT and AT at 0h was 82.50% and 75.00%, respectively and the corresponding values at 72h of preservation were 60.00% and 45.83%. The mean live sperm at 0h for RT and AT were 92.92% and 88.92%, respectively and the corresponding figures at 72h were 81.50% and 73.17%. The mean intact acrosome at 0h for RT and AT was 98.58% and 90.58%, respectively and at 72h the corresponding values were 91.66% and 82.25%. The sperm motility, live sperm count and intact acrosome decreased significantly (P<0.05) from 0h to 72h of preservation for both transportation temperatures. The sperm motility, live sperm count and intact acrosome also varied significantly between the transportation temperatures. The major sperm abnormality for both RT and AT at each hour of preservation up to 72h was less than 0.5%. The study concluded that epididymides or testicles should be transported to the laboratory at RT (4.9-6°C) either in an ice-chest or portable refrigerator for their processing, evaluation and storage.  相似文献   

19.
20.
G-protein activation by G-protein coupled receptors (GPCRs) is accomplished through proper interaction with the cytoplasmic loops rather than through sequence-specific interactions. However, the mechanism by which a specific G-protein is selected by a GPCR is not known. In the current model of GPCR activation, agonist binding modulates helix-helix interactions, which is necessary for fully determining G-protein specificity and stimulation of GDP/GTP exchange. In this study, we report that a single-residue deletion in transmembrane helix IV leads the angiotensin II type 1 (AT(1)) receptor chimera CR17 to retain GTP-sensitive high affinity for the agonist angiotensin II but results in complete inactivation of intracellular inositol phosphate production. The agonist dissociation profile of CR17 in the presence of guanosine 5'-3-O-(thio)triphosphate suggests that the activation-induced conformational changes of the chimeric receptor itself remain intact. Insertion of an alanine at position 149 (CR17triangle down149A) in this chimera rescued the inactive phenotype, restoring intracellular inositol phosphate production by the chimera. This finding suggests that in the wild-type AT(1) receptor the orientation of transmembrane helix IV-residues following Cys(149) is a key determinant for effectively distinguishing among various structurally similar G-proteins. The results emphasize that the contacts within the membrane-embedded portion of transmembrane helix IV in the AT(1) receptor is important for specific G-protein selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号