首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human serine/threonine kinase, mammalian STE20-like kinase (MST), is considerably homologous to the budding yeast kinases, SPS1 and STE20, throughout their kinase domains. The cellular function and physiological activation mechanism of MST is unknown except for the proteolytic cleavage-induced activation in apoptosis. In this study, we show that MST1 and MST2 are direct substrates of caspase-3 both in vivo and in vitro. cDNA cloning of MST homologues in mouse and nematode shows that caspase-cleaved sequences are evolutionarily conserved. Human MST1 has two caspase-cleavable sites, which generate biochemically distinct catalytic fragments. Staurosporine activates MST either caspase-dependently or independently, whereas Fas ligation activates it only caspase-dependently. Immunohistochemical analysis reveals that MST is localized in the cytoplasm. During Fas-mediated apoptosis, cleaved MST translocates into the nucleus before nuclear fragmentation is initiated, suggesting it functions in the nucleus. Transiently expressed MST1 induces striking morphological changes characteristic of apoptosis in both nucleus and cytoplasm, which is independent of caspase activation. Furthermore, when stably expressed in HeLa cells, MST highly sensitizes the cells to death receptor-mediated apoptosis by accelerating caspase-3 activation. These findings suggest that MST1 and MST2 play a role in apoptosis both upstream and downstream of caspase activation.  相似文献   

2.
3.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

4.
The activity of the cyclin-dependent kinase inhibitor p27 is controlled by its concentration and subcellular localization. However, the mechanisms that regulate its intracellular transport are poorly understood. Here we show that p27 is phosphorylated on Ser10 in vivo and that mutation of Ser10 to Ala inhibits p27 cytoplasmic relocalization in response to mitogenic stimulation. In contrast, a fraction of wild-type p27 and a p27(S10D)-phospho-mimetic mutant translocates to the cytoplasm in the presence of mitogens. G1 nuclear export of p27 and its Ser10 phosphorylation precede cyclin-dependent kinase 2 (Cdk2) activation and degradation of the bulk of p27. Interestingly, leptomycin B-mediated nuclear accumulation accelerates the turnover of endogenous p27; the p27(S10A) mutant, which is trapped in the nucleus, has a shorter half-life than wild-type p27 and the p27(S10D) mutant. In summary, p27 is efficiently degraded in the nucleus and phosphorylation of Ser10 is necessary for the nuclear to cytoplasmic redistribution of a fraction of p27 in response to mitogenic stimulation. This cytoplasmic localization may serve to decrease the abundance of p27 in the nucleus below a certain threshold required for activation of cyclin-Cdk2 complexes.  相似文献   

5.
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.  相似文献   

6.
7.
The metabolic regulator AMP-activated protein kinase (AMPK) maintains cellular homeostasis through regulation of proteins involved in energy-producing and -consuming pathways. Although AMPK phosphorylation targets include cytoplasmic and nuclear proteins, the precise mechanisms that regulate AMPK localization, and thus its access to these substrates, are unclear. We identify highly conserved carboxy-terminal hydrophobic amino acids that function as a leptomycin B–sensitive, CRM1-dependent nuclear export sequence (NES) in the AMPK catalytic subunit (AMPKα). When this sequence is modified AMPKα shows increased nuclear localization via a Ran-dependent import pathway. Cytoplasmic localization can be restored by substituting well-defined snurportin-1 or protein kinase A inhibitor (PKIA) CRM1-binding NESs into AMPKα. We demonstrate a functional requirement in vivo for the AMPKα carboxy-terminal NES, as transgenic Drosophila expressing AMPKα lacking this NES fail to rescue lethality of AMPKα null mutant flies and show decreased activation loop phosphorylation under heat-shock stress. Sequestered to the nucleus, this truncated protein shows highly reduced phosphorylation at the key Thr172 activation residue, suggesting that AMPK activation predominantly occurs in the cytoplasm under unstressed conditions. Thus, modulation of CRM1-mediated export of AMPKα via its C-terminal NES provides an additional mechanism for cells to use in the regulation of AMPK activity and localization.  相似文献   

8.
Annexin A1 (ANX-1), a calcium-dependent, phospholipid binding protein, is known to be involved in diverse cellular processes, including regulation of cell growth and differentiation, apoptosis, and inflammation. The mitogen phorbol 12-myristate 13-acetate (PMA) induces expression and phosphorylation of ANX-1. However, the roles of ANX-1 in PMA-induced signal transduction is unknown. Here, we study the cellular localization of ANX-1 in the PMA-induced signal transduction process. We have found that PMA induces the cleavage of ANX-1 in human embryonic kidney (HEK) 293 cells, and that the cleaved form of ANX-1 translocates to the nucleus. The PMA-induced nuclear translocation of ANX-1 was inhibited by the protein kinase C (PKC)delta-specific inhibitor rottlerin, indicating that PKCdelta plays a role in nuclear translocation of the cleaved ANX-1. We propose a novel mechanism of PMA-induced translocation of ANX-1 to the nucleus that may participate in the regulation of cell proliferation and differentiation.  相似文献   

9.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

10.
Protein phosphorylation plays an indispensable role in cellular regulation of mitosis, metabolism, differentiation, and death. We previously reported that the protein phosphatase inhibitor okadaic acid (OKA) induces apoptosis in renal epithelial cells in culture. In the present study, we examined the role of phosphotidylinositol 3 (PI3) kinase signaling in okadaic acid-induced apoptosis by pre-treating normal rat kidney renal epithelial cells expressing human bcl-2 with the PI3 kinase inhibitors, LY294002 and wortmannin, followed by apoptosis-inducing concentrations of okadaic acid. Given the reported cell survival activity of PI3 kinase signaling mostly attributed to Akt kinase activation, we hypothesized that inhibition of PI3 kinase would enhance okadaic-induced apoptosis. Surprisingly, our data show that pretreatment with LY294002, but not wortmannin, attenuated okadaic acid-induced apoptosis. In contrast, to LY294002, wortmannin enhanced apoptosis. Interestingly, we also found that LY294002 treatment increased bcl-2 protein levels in normal rat kidney epithelial cells expressing bcl-2 (NRK-bcl-2). In untreated cells, bcl-2 appeared to be mainly perinuclear, coincident with the nuclear membrane, or in the cytosol. In OKA treated cells that were pre-treated with Ly294002, bcl-2 was highly co-localized with mitochondria, but in cells treated with okadaic acid alone, bcl-2 was associated with fragmented chromatin. In this model, it appears that LY294002 may exert anti-apoptotic effects by a previously unreported treatment related increase in bcl-2. Although it is widely accepted that bcl-2 protein can inhibit apoptosis, we propose that the subcellular location of bcl-2 is an important determinant in whether bcl-2 effectively inhibits apoptosis.  相似文献   

11.
MST1 (mammalian STE20-like kinase 1) is a serine/threonine kinase that is cleaved and activated by caspases during apoptosis. Overexpression of MST1 induces apoptotic morphological changes such as chromatin condensation, but the mechanism is not clear. Here we show that MST1 induces apoptotic chromatin condensation through its phosphorylation of histone H2AX at Ser-139. During etoposide-induced apoptosis in Jurkat cells, the cleavage of MST1 directly corresponded with strong H2AX phosphorylation. In vitro kinase assay results showed that MST1 strongly phosphorylates histone H2AX. Western blot and kinase assay results with a mutant S139A H2AX confirmed that MST1 phosphorylates H2AX at Ser-139. Direct binding of MST1 and H2AX can be detected when co-expressed in HEK293 cells and was also confirmed by an endogenous immunoprecipitation study. When overexpressed in HeLa cells, both the MST1 full-length protein and the MST1 kinase domain (MST1-NT), but not the kinase-negative mutant (MST1-NT-KN), could induce obvious endogenous histone H2AX phosphorylation. The caspase-3 inhibitor benzyloxycarbonyl-DEVD-fluoromethyl ketone (Z-DEVD-fmk) attenuates phosphorylation of H2AX by MST1 but cannot inhibit MST1-NT-induced histone H2AX phosphorylation, indicating that cleaved MST1 is responsible for H2AX phosphorylation during apoptosis. Histone H2AX phosphorylation and DNA fragmentation were suppressed in MST1 knockdown Jurkat cells after etoposide treatment. Taken together, our data indicated that H2AX is a substrate of MST1, which functions to induce apoptotic chromatin condensation and DNA fragmentation.  相似文献   

12.
P Ferrigno  F Posas  D Koepp  H Saito    P A Silver 《The EMBO journal》1998,17(19):5606-5614
MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.  相似文献   

13.
The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus.  相似文献   

14.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

15.
16.
Mitogen-activated protein kinases (MAPKs) phosphorylate target proteins in both the cytoplasm and nucleus, and a strong correlation exists between the subcellular localization of MAPK and resulting cellular responses. It was thought that MAPK phosphorylation was always followed by rapid nuclear translocation. However, we and others have found that MAPK phosphorylation is not always sufficient for nuclear translocation in vivo. In the developing Drosophila wing, MAPK-mediated signaling is required both for patterning and for cell proliferation, although the mechanism of this differential control is not fully understood. Here, we show that phosphorylated MAPK (pMAPK) is held in the cytoplasm in differentiating larval and pupal wing vein cells, and we show that this cytoplasmic hold is required for vein cell fate. At the same time, we show that MAPK does move into the nucleus of other wing cells where it promotes cell proliferation. We propose a novel Ras pathway bifurcation in Drosophila and our results suggest a mechanism by which MAPK phosphorylation can signal two different cellular outcomes (differentiation versus proliferation) based on the subcellular localization of MAPK.  相似文献   

17.
18.
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is nuclear in epithelial cells of the normal prostate, but cytoplasmic in prostate tumors and in the PC3 prostate tumor cell line. The impact of altered PTK6 intracellular localization in prostate tumor cells has not been extensively explored. Knockdown of endogenous cytoplasmic PTK6 resulted in decreased PC3 cell proliferation and colony formation, suggesting that cytoplasmic PTK6 stimulates oncogenic pathways. In contrast, reintroduction of PTK6 into nuclei of PC3 cells had a negative effect on growth. Enhanced tyrosine phosphorylation of the PTK6 substrate Sam68 was detected in cells expressing nuclear-targeted PTK6. We found that mechanisms regulating nuclear localization of PTK6 are intact in PC3 cells. Transiently over-expressed PTK6 readily enters the nucleus. Ectopic expression of ALT-PTK6, a catalytically inactive splice variant of PTK6, did not affect localization of endogenous PTK6 in PC3 cells. Using leptomycin B, we confirmed that cytoplasmic localization of endogenous PTK6 is not due to CRM-1/exportin-1 mediated nuclear export. In addition, over-expression of the PTK6 nuclear substrate Sam68 is not sufficient to bring PTK6 into the nucleus. While exogenous PTK6 was readily detected in the nucleus when transiently expressed at high levels, low-level expression of inducible wild type PTK6 in stable cell lines resulted in its cytoplasmic retention. Our results suggest that retention of PTK6 in the cytoplasm of prostate cancer cells disrupts its ability to regulate nuclear substrates and leads to aberrant growth. In prostate cancer, restoring PTK6 nuclear localization may have therapeutic advantages.  相似文献   

19.
RASSF5 is a member of the Ras association domain family, which is known to be involved in cell growth regulation. Expression of RASSF5 is extinguished selectively by epigenetic mechanism(s) in different cancers and cell lines, and reexpression usually suppresses cell proliferation and tumorigenicity. To date, the mechanism regulating RASSF5 nuclear transport and its role in cell growth regulation remains unclear. Using heterokaryon assay, we have demonstrated that RASSF5 shuttles between the nucleus and the cytoplasm, and its export from the nucleus is sensitive to leptomycin B, suggesting that RASSF5 is exported from the nucleus by a CRM-1-dependent export pathway. We further demonstrate that RASSF5 contains a hydrophobic-rich nuclear export signal (NES) towards the C-terminus and two nuclear localization signals—one each at the N-terminus and the C-terminus. Combination of mutational and immunofluorescence analyses suggests that the functional NES residing between amino acids 260 and 300 in the C-terminus is necessary for the efficient export of RASSF5 from the nucleus. In addition, substitution of conserved hydrophobic residues within the minimal NES impaired RASSF5 export from the nucleus. Furthermore, exchange of proline residues within the putative Src homology 3 binding motifs altered the export of RASSF5 from the nucleus despite the presence of functional NES, suggesting that multiple domains independently modulate the nucleocytoplasmic transport of RASSF5. Interestingly, the present investigation provided evidence that RASSF5 interacts with the tyrosine kinase Lck through its C-terminal Src homology 2 binding motif and showed that Lck-mediated phosphorylation is critical for the efficient translocation of RASSF5 into the nuclear compartment. Interestingly, our data demonstrate that wild type and nuclear export defective (ΔNES) mutant of RASSF5 but not the import defective mutant of accumulate the cells at G1/S phase and induce apoptosis. Furthermore, the Lck-interaction-defective mutant of RASSF5 induces apoptosis without altering cell cycle progression, suggesting that RASSF5 induces apoptosis independent of cell cycle arrest. Together, our data demonstrate that interaction with Lck is critical for RASSF5 phosphorylation, which in turn regulates the cell growth control activity of RASSF5. Finally, we have shown that RASSF5 encodes four splice variants and is translocated to the nucleus by the classical nuclear import pathway. One of the splice variants, RASSF5C, was found to be localized in the cytoplasm and translocated into the nucleus upon leptomycin B treatment despite the absence of N-terminal nuclear localization signal, suggesting that distribution of RASSF5 variants in different cellular compartments may be critical for Ras-dependent cell growth regulation. Collectively, the present investigation provided evidence that Lck-mediated phosphorylation regulates the nucleocytoplasmic shuttling and cell growth control activities of RASSF5.  相似文献   

20.
Upon stimulation, many proteins translocate into the nucleus in order to regulate a variety of cellular processes. The mechanism underlying the translocation is not clear since many of these proteins lack a canonical nuclear localization signal (NLS). We searched for an alternative mechanism in extracellular signal-regulated kinase (ERK)-2 and identified a 3 amino acid domain (SPS) that is phosphorylated upon stimulation to induce nuclear translocation of ERK2. A 19 amino acid stretch containing this phosphorylated domain inserts nondiffusible proteins to the nucleus autonomously. The phosphorylated SPS acts by binding to importin7 and the release from nuclear pore proteins. This allows its functioning both in passive and active ERK transports. A similar domain appears in many cytonuclear shuttling proteins, and we found that phosphorylation of similar sequences in SMAD3 or MEK1 also induces their nuclear accumulation. Therefore, our findings show that this phosphorylated domain acts as a general nuclear translocation signal (NTS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号