首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cells express a variety of surface proteins as they develop to maturity in the thymus. In addition to the TCR-CD3 complex and the two major coreceptors, CD4 and CD8, other surface proteins expressed include receptors for cytokines, growth factors, counterreceptors, and extracellular matrix molecules. To determine the role of integrin adhesion receptors in T cell development, we have expressed a trans-dominant inhibitor of integrin function in the thymus. This inhibitor leads to a block of adhesion to fibronectin due to reduced activation of integrin receptors. This reduced adhesion leads to a partial block in differentiation from CD4-CD8- cells to CD4+CD8+ cells, after the CD25+ stage, suggesting that integrins are important during Lck-mediated differentiation. Furthermore, the overall production of CD4+ cells is reduced compared with that of CD8+ cells without changes in negative selection, suggesting that integrins may be involved in the determination of the fate of the cell as well. These results demonstrate that integrin receptor function is required for proper thymocyte development in vivo.  相似文献   

2.
We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone. Unlike other inducers of metalloproteinase expression, including phorbol diesters and growth factors, addition of the anti-FnR in solution to cells adherent to serum-derived adhesion proteins or collagen produced no detectable change in cell shape or actin microfilament organization. Inductive effects were potentiated by cross-linking of the ligand. Fab fragments of anti-FnR were ineffective unless cross-linked or immobilized on the substrate. Adhesion of fibroblasts to native fibronectin did not induce metallo-proteinases. However, adhesion to covalently immobilized peptides containing the arg-gly-asp sequence that were derived from fibronectin, varying in size from hexapeptides up to 120 kD, induced collagenase and stromelysin gene expression. This suggests that degradation products of fibronectin are the natural inductive ligands for the FnR. These data demonstrate that signals leading to changes in gene expression are transduced by the FnR, a member of the integrin family of extracellular matrix receptors. The signaling of changes in gene expression by the FnR is distinct from signaling involving cell shape and actin cytoarchitecture. At least two distinct signals are generated: the binding of fibronectin-derived fragments and adhesion-blocking antibodies to the FnR triggers events different from those triggered by binding of the native fibronectin ligand. Because the genes regulated by this integrin are for enzymes that degrade the extracellular matrix, these results suggest that information transduced by the binding of various ligands to integrins may orchestrate the expression of genes regulating cell behavior in the extracellular environment.  相似文献   

3.
Muscle cell survival depends upon the presence of various integrins with affinities for different extracellular matrix proteins. The absence of either alpha(5) or alpha(7) integrins leads to degenerative disorders of skeletal muscle, muscular dystrophies. To understand the cell survival signals that are mediated by integrin engagement with matrix proteins, we studied the early signaling events initiated by the attachment of muscle cells to fibronectin, an interaction that is mediated primarily by alpha(5) integrins. Cells that express alpha(5) integrin rapidly spread on fibronectin, and this process is associated with the phosphorylation of focal adhesion kinase (FAK). Cells deficient in alpha(5) integrin failed to spread or promote FAK phosphorylation when plated on fibronectin. For alpha(5)-expressing cells, both spreading and FAK phosphorylation could be blocked by inhibitors of protein kinase C (PKC), indicating that PKC is necessary for this "outside-in signaling" mediated by alpha(5) integrin. Surprisingly, activators of PKC could promote spreading and FAK phosphorylation in alpha(5)-deficient muscle cells plated on fibronectin. This PKC-induced cell spreading appeared to be due to activation of alpha(4) integrins ("inside-out signaling") since it could be blocked by peptides that specifically inhibit alpha(4) integrin binding to fibronectin. A model of integrin signaling in muscle cells is presented in which there is a positive feedback loop involving PKC in both outside-in and inside-out signaling, and the activation of this cycle is essential for cell spreading and downstream signaling to promote cell survival. In addition, the data indicate a cross-talk that occurs between integrins in which the outside-in signaling via one integrin can promote the activation of another integrin via inside-out signaling.  相似文献   

4.
Anchorage of cells to the extracellular matrix and integrin-mediated signals play crucial roles in cell survival. We have previously shown that during growth factor deprivation-induced apoptosis in human umbilical vein endothelial cells (HUVECs), key molecules in focal adhesions and adherens junctions are cleaved by caspases. In this study we provide evidence for a selective upregulation of cell-associated matrix metalloproteinases (MMPs). We observe a physical association of MMP2 with beta1 and alphav integrins, which increased three- to fourfold during apoptosis and is dependent upon integrin beta1 levels and activation state. Both enforced activation of beta1 integrin by a specific antibody and inhibition of MMPs protect HUVECs from apoptosis. We hypothesize that, prior to the commitment to apoptosis, 'inside-out' signals initiated by the apoptotic stimulus alter cell shape together with the activation states and/or the availability of integrins, which promote matrix-degrading activity around dying cells. This 'auxiliary' apoptotic pathway may interrupt ECM-mediated survival signaling, and thus accelerate the efficient execution of the cell death program.  相似文献   

5.
The adhesive function of integrins is regulated through cytoplasmic signaling induced by several stimuli, whose process is designated "inside-out signaling". A large number of leukocytes are rapidly recruited to the sites of inflammation where they form an essential component of the response to infection, injury, autoimmune disorders, allergy, tumor invasion, atherosclerosis and so on. The recruitment of leukocytes into tissue is regulated by a sequence of interactions between the circulating leukocytes and the endothelial cells. Leukocyte integrins play a pivotal role in leukocyte adhesion to endothelial cells. During the process, the activation of integrins by various chemoattractants, especially chemokines, is essential for integrin-mediated adhesion in which a signal transduced to the leukocyte converts the functionally inactive integrin to an active adhesive configuration. We have proposed that H-Ras-sensitive activation of phosphoinositide 3 (PI 3)-kinase and subsequent profilin-mediated actin polymerization, can be involved in chemokine-induced integrin-dependent adhesion of T cells. The present review documents the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemoattractants including chemokines during inflammatory processes. In contrast, various adhesion molecules are known to transduce extracellular information into cytoplasm, which leads to T cell activation and cytokine production from the cells, designated "outside-in signaling". Such a bi-directional "cross-talking" among adhesion molecules and cytokines is most relevant to inflammatory processes by augmenting immune cell migration from circulation into inflamed tissue such as rheumatoid arthritis, tumor invasion, Beh?et's disease and atherosclerosis.  相似文献   

6.
Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation.  相似文献   

7.
The matrix reorganized: extracellular matrix remodeling and integrin signaling   总被引:14,自引:0,他引:14  
Via integrins, cells can sense dimensionality and other physical and biochemical properties of the extracellular matrix (ECM). Cells respond differently to two-dimensional substrates and three-dimensional environments, activating distinct signaling pathways for each. Direct integrin signaling and indirect integrin modulation of growth factor and other intracellular signaling pathways regulate ECM remodeling and control subsequent cell behavior and tissue organization. ECM remodeling is critical for many developmental processes, and remodeled ECM contributes to tumorigenesis. These recent advances in the field provide new insights and raise new questions about the mechanisms of ECM synthesis and proteolytic degradation, as well as the roles of integrins and tension in ECM remodeling.  相似文献   

8.
The recruitment of tissue‐resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin‐mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet‐derived growth factor‐BB (PDGF‐BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up‐regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti‐integrin α5 antibodies inhibited PDL cell migration. Treatment with anti‐integrin α3, α3‐blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF‐BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3‐mediated inhibition and α5‐mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.  相似文献   

9.
The activation and differentiation of peripheral blood T cells (PBT) are known to correlate with increased surface expression and adhesive capacity of beta(1) integrins, which mediate adhesion to the extracellular matrix (ECM). However, little is known about the regulation of integrin expression, affinity, and avidity on tissue T cells after they are embedded in the interstitial ECM. In this study we show that tissue T cells, freshly isolated from their residence in the interstitial ECM of the intestinal lamina propria, express a distinct subset of functionally active integrins that contribute to enhanced adhesion to purified collagen, fibronectin, and cell-derived ECM when compared with freshly isolated, short term activated, and long term cultured PBT. Furthermore, integrin usage is distinct between circulating and tissue-derived T cells, in that lamina propria T cells prefer to bind to collagen, while PBT lymphoblasts choose fibronectin when presented with a complex, three-dimensional, cell-derived matrix. To identify the extrinsic factors that regulate the conversion from a nonadhesive PBT to highly adhesive tissue T cell, we demonstrate that activation of PBT in the presence of fibronectin or collagen rapidly generates a surface integrin expression profile, an integrin usage pattern, and adhesive capacity mirroring that of a tissue T cell. These results indicate that the tissue ECM microenvironment instructs newly arrived T cells for further interactions with the underlying matrix and thereby imprints them with a signature tissue adhesive phenotype.  相似文献   

10.
The integrin family of cell adhesion receptors plays a major role in mediating interactions between cells and the extracellular matrix. Normal adult articular chondrocytes express α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5 integrins, while chondrocytes from osteoarthritic tissue also express α2β1, α4β1, α6β1. These integrins bind a host of cartilage extracellular matrix (ECM) proteins, most notably fibronectin and collagen types II and VI, which provide signals that regulate cell proliferation, survival, differentiation, and matrix remodeling. By initiating signals in response to mechanical forces, chondrocyte integrins also serve as mechanotransducers. When the cartilage matrix is damaged in osteoarthritis, fragments of fibronectin are generated that signal through the α5β1 integrin to activate a pro-inflammatory and pro-catabolic response which, if left unchecked, could contribute to progressive matrix degradation. The cell signaling pathways activated in response to excessive mechanical signals and to fibronectin fragments are being unraveled and may represent useful therapeutic targets for slowing or stopping progressive matrix destruction in arthritis.  相似文献   

11.
Signal transduction via integrins and G protein–coupled receptors is critical to control cell behavior. These two receptor classes have been traditionally believed to trigger distinct and independent signaling cascades in response to extracellular cues. Here, we report a novel mechanism of integrin signaling that requires activation of the trimeric G protein Gαi by the nonreceptor guanine nucleotide exchange factor (GEF) GIV (also known as Girdin), a metastasis-associated protein. We demonstrate that GIV enhances integrin-dependent cell responses upon extracellular matrix stimulation and makes tumor cells more invasive. These responses include remodeling of the actin cytoskeleton and PI3K-dependent signaling, resulting in enhanced haptotaxis and invasion. We show that both GIV and its substrate Gαi3 are recruited to active integrin complexes and that tumor cells engineered to express GEF-deficient GIV fail to transduce integrin signals into proinvasive responses via a Gβγ-PI3K axis. Our discoveries delineate a novel mechanism by which integrin signaling is rewired during metastasis to result in increased tumor invasiveness.  相似文献   

12.
Increased affinity of integrins for the extracellular matrix (activation) regulates cell adhesion and migration, extracellular matrix assembly, and mechanotransduction. Major uncertainties concern the sufficiency of talin for activation, whether conformational change without clustering leads to activation, and whether mechanical force is required for molecular extension. Here, we reconstructed physiological integrin activation in vitro and used cellular, biochemical, biophysical, and ultrastructural analyses to show that talin binding is sufficient to activate integrin αIIbβ3. Furthermore, we synthesized nanodiscs, each bearing a single lipid-embedded integrin, and used them to show that talin activates unclustered integrins leading to molecular extension in the absence of force or other membrane proteins. Thus, we provide the first proof that talin binding is sufficient to activate and extend membrane-embedded integrin αIIbβ3, thereby resolving numerous controversies and enabling molecular analysis of reconstructed integrin signaling.  相似文献   

13.
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) participate in matrix degradation and cell migration by focusing proteolysis and functioning as a signaling ligand/receptor complex. uPAR, anchored by a lipid moiety in the membrane, is thought to require a transmembrane adapter to transduce signals into the cytoplasm. To study uPAR signaling, we transfected the prostate carcinoma cell line LNCaP, which does not express endogenous uPA or uPAR, with a uPAR encoding cDNA, resulting in high-level surface expression. We studied migration of these cells on fibronectin, which is mediated by the integrin alpha5beta1. Ligation of uPAR with uPA or its amino-terminal fragment enhanced haptotactic migration to fibronectin. In cells on fibronectin, but not on poly-l-lysine, ligation of uPAR also resulted in tyrosine phosphorylation of several proteins, including two proteins involved in integrin signaling, focal adhesion kinase and the crk-associated substrate p130(Cas). Furthermore, after uPAR ligation, uPAR was co-immunoprecipitated with beta1 integrins from the detergent-insoluble fraction of cell lysates. Thus, our data suggest that uPAR occupancy results in an interaction between uPAR and integrins and a potentiation of integrin-mediated signaling, which leads to enhanced cell migration.  相似文献   

14.
15.
Members of the integrin family of adhesion receptors mediate interactions of cells with the extracellular matrix. Besides their role in tissue morphogenesis by anchorage of cells to basement membranes and migration along extracellular matrix proteins, integrins are thought to play a key role in mediating the control of gene expression by the extracellular matrix. Studies over the past 10 years have shown that integrin-mediated cell adhesion can trigger signal transduction cascades involving translocation of proteins and protein tyrosine phosphorylation events. In this review, we discuss approaches used in our lab to study early events in integrin signalling as well as further downstream changes.  相似文献   

16.
The integrin family was originally described as a family of adhesion receptors, utilized by cells for attachment to and migration across components of the extracellular matrix. Epithelial cells in adult tissues are generally stationary cells, but these cells nevertheless express several different integrins. This review will discuss the evidence that integrins on epithelial cells are also likely to function as signaling molecules, allowing these cells to detect attachment or detachment, and changes in the local composition of ligands. Signals initiated by integrins appear to modulate epithelial cell differentiation, proliferation, survival, and gene expression. Because the local concentration of integrin ligands is altered by injury, inflammation, and remodeling, signals initiated through integrins are likely to play important roles in the responses of epithelial cells to each of these processes.  相似文献   

17.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

18.
Regulation of tumor cell invasion by extracellular matrix   总被引:10,自引:0,他引:10  
  相似文献   

19.
Differentiation of extravillous trophoblast cells (EVT) to an invasive phenotype plays an essential role in establishing and maintaining feto-placental organization during human pregnancy. A switch in integrin expression occurs during this differentiation and is accompanied by changes in the extracellular matrix (ECM). Alteration of EVT behavior is also modulated by cytokines. To investigate the molecular interactions involved in the EVT differentiation, we examined the effects of cytokines and ECM on the human EVT cell line, TCL1 cells. We found that tumor necrosis factor alpha (TNFalpha) induced apoptosis in TCL1 cells but not in JEG3 cells derived from choriocarcinoma while the addition of interleukin-1beta, leukemia inhibitory factor, or transforming growth factor had no effect on TCL1 cells. This apoptosis was suppressed when TCL1 cells were seeded on fibronectin (Fn), collagen type I (C1), collagen type IV (C4), or laminin (Ln). Wortmannin, a specific PI3 kinase inhibitor, inhibited this suppression. Spreading assays and adhesion blocking assays indicated that TCL1 cells express integrin-alpha5 and -alpha6 and beta1 and beta4 subunits. Adhesion on Fn is mediated by alpha5beta1, and adhesion on C1, C4, or Ln is mediated by alpha6beta1 integrins. TNFalpha suppressed alpha6 integrin expression and enhanced alpha1 integrin expression in a dose-dependent manner. In addition, aggregation of beta1 subunits on C4 was detected after addition of TNFalpha. Taken together, these results suggest that TNFalpha and ECM, through activation of PI3 kinase mediated by beta1 integrin signaling, might collaboratively regulate differentiation of trophoblast cells through integrin signaling in establishing and maintaining successful pregnancy.  相似文献   

20.
The mammary gland undergoes hormonally controlled cycles of pubertal maturation, pregnancy, lactation, and involution, and these processes rely on complex signaling mechanisms, many of which are controlled by cell–cell and cell–matrix adhesion. The adhesion of epithelial cells to the extracellular matrix initiates signaling mechanisms that have an impact on cell proliferation, survival, and differentiation throughout lactation. The control of integrin expression on the mammary epithelial cells, the composition of the extracellular matrix and the presence of secreted matricellular proteins all contribute to essential adhesion signaling during lactogenesis. In vitro and in vivo studies, including the results from genetically engineered mice, have shed light on the regulation of these processes at the cell and tissue level and have led to increased understanding of the essential signaling components that are regulated in temporal and cell specific manner during lactogenesis. Recent studies suggest that a secreted matricellular protein, CTGF/CCN2, may play a role in lactogenic differentiation through binding to β1 integrin complexes, enhancing the production of extracellular matrix components and contributions to cell adhesion signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号