首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hox genes form a multigenic family that play a fundamental role during the early stages of development. They are organised in a single cluster and share a 60 amino acid conserved sequence that corresponds to the DNA binding domain, i.e. the homeodomain. Sequence conservation in this region has allowed investigators to explore Hox diversity in the metazoan lineages. Within parasitic flatworms only homeobox sequences of parasite species from the Cestoda and Digenea have been reported. In the present study we surveyed species of the Polyopisthocotylea (Monogenea) in order to clarify Hox identification and diversification processes in the neodermatan lineage. From cloning of degenerative PCR products of the central region of the homeobox, we report one ParaHox and 25 new Hox sequences from 10 species of the Polystomatidae and one species of the Diclidophoridae, which extend Hox gene diversity from 46 to 72 within Neodermata. Hox sequences from the Polyopisthocotylea were annotated and classified from sequence alignments and Bayesian inferences of 178 Hox, ParaHox and related gene families recovered from all available parasitic platyhelminths and other bilaterian taxa. Our results are discussed in the light of the recent Hox evolutionary schemes. They may provide new perspectives to study the transition from turbellarians to parasitic flatworms with complex life-cycles and outline the first steps for evolutionary developmental biological approaches within platyhelminth parasites.  相似文献   

2.
Considering the addition of intermediate transmission steps during life cycle evolution, developmental plasticity, canalization forces and inherited parental effect must be invoked to explain new host colonization. Unfortunately, there is a lack of experimental procedures and relevant models to explore the adaptive value of alternative developmental phenotypes during life cycle evolution. However, within the monogeneans that are characterized by a direct life cycle, an extension of the transmission strategy of amphibian parasites has been reported within species of Polystoma and Metapolystoma (Polyopisthocotylea; Polystomatidae). In this study, we tested whether the infection success of Polystoma gallieni within tadpoles of its specific host, the Stripeless Tree Frog Hyla meridionalis, differs depending on the parental origin of the oncomiracidium. An increase in the infection success of the parasitic larvae when exposed to the same experimental conditions as their parents was expected as an adaptive pattern of non-genetic inherited information. Twice as many parasites were actually recorded from tadpoles infected with oncomiracidia hatching from eggs of the bladder parental phenotype (1.63 ± 0.82 parasites per host) than from tadpoles infected with oncomiracidia hatching from eggs of the branchial parental phenotype (0.83 ± 0.64 parasites per host). Because in natural environments the alternation of the two phenotypes is likely to occur due to the ecology of its host, the differential infection success within young tadpoles could have an adaptive value that favors the parasite transmission over time.  相似文献   

3.
Aim  The present-day geographical distribution of parasites with a direct biological life cycle is guided mostly by the past dispersal and vicariance events that have affected their hosts. The Amphibia– Polystoma association (which satisfies these criteria) also exhibits original traits, such as host specificity and world-wide distribution. This biological model was thus chosen to investigate the common historical biogeography of its widespread representatives.
Location  North and South America, Eurasia and Africa.
Methods  We investigated the phylogeny of 12 species of neobatrachian parasites sampled from North and South America, Eurasia and Africa. Hosts belonged mostly to hyloids and ranoids of families Bufonidae, Hylidae, Leptodactylidae, Ranidae and Hyperoliidae. Phylogenetic reconstructions were inferred from maximum likelihood and maximum parsimony analyses from complete ITS1 sequences.
Results  The group of American species appeared paraphyletic with one species at the base of a Eurafrican clade, within which two lineages were seen: one composed of only Eurasian species, and the other of European and African species, with the two European species basal to an African clade.
Main conclusions  The route of Polystoma evolution is deduced from the phylogenetic tree and discussed in the light of host evolution. We conclude that Polystoma originated in South America on hyloids, after the separation of South America from Africa. The genus must have colonized North America in Palaeocene times and Eurasia by the mid-Cainozoic, taking advantage of the dispersal of either ancestral bufonids or hylids. Africa, however, appears to have been colonized more recently, during the Messinian period.  相似文献   

4.
Rohde K. 1973. Ultrastructure of the protonephridial system of Polystomoides malayi Rohde and P. renschi Rohde (Monogenea : Polystomatidae). International Journal for Parasitology3: 329–333. Polystomoides malayi and P. renschi have three types of protonephridial flames. The first type is a typical flame cell with internal and external ribs connected by a weir membrane without nephrostomes, and with internal and external leptotriches. The second type is a flame cell complex consisting of at least two flames reaching into a common cavity. The third type is a non-terminal (= lateral) flame in the protonephridial ducts, consisting of loosely arranged cilia many of which have lateral tube-like extensions and whose tips have irregularly arranged filaments gradually decreasing in number. The number of cilia in all types of flames varies. The smallest capillaries are strongly convoluted and have a smooth or slightly reticulated surface, the larger ducts have strongly reticulated walls and single cilia may be found in the cavities of the reticulum.  相似文献   

5.
Relationships between the three classes of Neodermata (parasitic Platyhelminthes) are much debated and restrict our understanding of the evolution of parasitism and contingent adaptations. The historic view of a sister relationship between Cestoda and Monogenea (Cercomeromorphae; larvae bearing posterior hooks) has been dismissed and the weight of evidence against monogenean monophyly has mounted. We present the nucleotide sequence of the complete mitochondrial (mt) genome of Benedenia seriolae (Monogenea: Monopisthocotylea: Capsalidae), the first complete non-gyrodactylid monopisthocotylean mt genome to be reported. We also include nucleotide sequence data for some mt protein coding genes for a second capsalid, Neobenedenia sp. Analyses of the new mt genomes with all available platyhelminth mt genomes provide new phylogenetic hypotheses, which strongly influence perspectives on the evolution of diet in the Neodermata. Our analyses do not support monogenean monophyly but confirm that the Digenea and Cestoda are each monophyletic and sister groups. Epithelial feeding monopisthocotyleans on fish hosts are basal in the Neodermata and represent the first shift to parasitism from free-living ancestors. The next evolutionary step in parasitism was a dietary change from epithelium to blood. The common ancestor of Digenea + Cestoda was monogenean-like and most likely sanguinivorous. From this ancestral condition, adult digeneans and cestodes independently evolved dietary specialisations to suit their diverse microhabitats in their final vertebrate hosts. These improved perspectives on relationships fundamentally enhance our understanding of the evolution of parasitism in the Neodermata and in particular, the evolution of diet.  相似文献   

6.
Among Polystomatidae (Monogenea), the genus Polystoma, which mainly infests neobatrachian hosts, is the most diverse and occurs principally in Africa, from where half the species have been reported. Previous molecular phylogenetic studies have shown that this genus originated in South America, and later colonised Eurasia and Africa. No mention was made on dispersal corridors between Europe and Africa or of the origin of the African Polystoma radiation. Therefore, a molecular phylogeny was inferred from ITS1 sequences of 21 taxa comprising two species from America, seven representatives from Europe and 12 from Africa. The topology of the phylogenetic tree reveals that a single event of colonisation took place from Europe to Africa and that the putative host carrying along the ancestral polystome is to be found among ancestral pelobatids. Percentage divergences estimates suggest that some presumably distinct vesicular species in unrelated South African anurans and some neotenic forms found in several distinct hosts in Ivory Coast, could, in fact, belong to two single polystome species parasitising divergent hosts. Two main factors are identified that may explain the diversity of African polystomes: (i), we propose that following some degree of generalism, at least during the juvenile stages of both hosts and parasites, distinctive larval behaviour of polystomes engenders isolation between parasite populations that precludes sympatric speciations; (ii), cospeciation events between Ptychadena hosts and their parasites are another factor of diversification of Polystoma on the African continent. Finally, we discuss the systematic status of the Madagascan parasite Metapolystoma, as well as the colonisation of Madagascar by the host Ptychadena mascareniensis.  相似文献   

7.
The Polystomatidae is the only family within the Monogenea to parasitize sarcopterygians such as the Australian lungfish Neoceratodus poisteri and freshwater tetrapods (lissamphibians and chelonians). We present a phylogeny based on partial 18S rDNA sequences of 26 species of Polystomatidae and three taxon from the infrasubclass Oligonchoinea (= Polyopisthocotylea) obtained from the gills of teleost fishes. The basal position of the polystome from lungfish within the Polystomatidae suggests that the family arose during the evolutionary transition between actinopterygians and sarcopterygians, ca. 425 million years (Myr) ago. The monophyly of the polystomatid lineages from chelonian and lissamphibian hosts, in addition to estimates of the divergence times, indicate that polystomatids from turtles radiated ca. 191 Myr ago, following a switch from an aquatic amniote presumed to be extinct to turtles, which diversified in the Upper Triassic. Within polystomatids from lissamphibians, we observe a polytomy of four lineages, namely caudatan, neobatrachian, pelobatid and pipid polystomatid lineages, which occurred ca. 246 Myr ago according to molecular divergence-time estimates. This suggests that the first polystomatids of amphibians originated during the evolution and diversification of lissamphibian orders and suborders ca. 250 Myr ago. Finally, we report a vicariance event between two major groups of neobatrachian polystomes, which is probably linked to the separation of South America from Africa ca. 100 Myr ago.  相似文献   

8.
Summary The fine structure of the brain of the monogenean Gastrocotyle trachuri (Platyhelminthes) is described. The brain consists of a central neuropile surrounded by a layer of cell bodies. The neuropile is composed of a fine meshwork of naked neurites which contain various types of vesicles and other organelles although microtubules have not been found. Five kinds of vesicles; three clear types and two dense types, were found within the neuropile.Two types of neuronal cell body were identified on the basis of their vesicle contents although it is possible that these two types represent the extremes of a single cell type. A characteristic feature of the neuronal perikarya of Gastrocotyle is the presence of deep infoldings into the cell of the outer membrane. These infoldings often contain fibrous interstitial material and in a number of cases hemidesmosome-like structures have been found in the distended, distal end of the infoldings.  相似文献   

9.
The spermatozoon of the monopisthocotylean monogenean Pseudodactylogyrus sp. (a gill parasite of eels) has a single axoneme showing a 9+‘1’ pattern, a nucleus and a mitochondrion, but has no cortical microtubules. This species thus provides a very simple model for the study of tubulin in the 9+‘1’ axonemes of the Platyhelminthes, in contrast with digenean sperm which have a more complex spermatozoon with two such axonemes and cortical microtubules. Indirect immunofluorescence labelling of tubulin shows that the elongating spermatids, initially lying in all directions in the early stages, are arranged as parallel elements in further stages. The number of spermatids in an isogenic group could also be precisely counted and equals 32. Nuclear labelling with fluorescent dyes shows that the nuclei, first located in the common mass of the spermatids, later elongate and migrate into the growing spermatids, and that the nucleus is located in the central part of the mature spermatozoon, with the two extremities devoid of nucleus. Labelling with antibodies directed against acetylated, tyrosinated, and polyglutamylated tubulin gave positive results, thus indicating that these post-translational modifications of tubulin are present in the axoneme of spermatids and spermatozoa of monopisthocotylean monogeneans.  相似文献   

10.
The ultrastructure of the flame bulbs and capillaries of the protonephridia of Dactylogyrus (probably anchoratus) from Carassius auratus in southeastern Australia, and of an unidentified ancyrocephaline from the marine teleost Priacanthus macracanthus in southern Queensland is described. The cilia of the flame are anchored in the terminal cell by means of basal bodies without distinct rootlets. The nucleus of the terminal cell is basal, and (in Dactylogyrus) partly lateral to the basal bodies. The weir consists of a row of internal and a row of external ribs (rods) connected by a ‘membrane’. The external ribs are continuations of the cytoplasm of a thick-walled ‘cytoplasmic cylinder’ (proximal canal cell) which tightly surrounds most of the flame and contains a septate junction; the internal ribs are continuous with the terminal cell. Internal leptotriches arise from the perikaryon of the terminal cell, and, in the ancyrocephaline, also from the internal ribs. The wall of the protonephridial capillaries contains a septate junction, a reticulum of interconnected spaces and, in the ancyrocephaline, also lamellae. Lateral flames are common in the capillaries of Dactylogyrus.  相似文献   

11.
The barnacles (Crustacea, Cirripedia) consist of three well-defined orders: the conventional filter-feeding barnacles (Thoracica), the burrowing barnacles (Acrothoracica), and the parasitic barnacles (Rhizocephala). Thoracica and Acrothoracica feed by catching food particles from the surrounding seawater using their thoracic appendages while members of Rhizocephala are exclusively parasitic. The parasite consists of a sac-shaped, external reproductive organ situated on the abdomen of its crustacean host and a nutrient-absorbing root system embedded into the heamolymph of the host. In order to resolve the phylogenetic relationship of the order Rhizocephala and elucidate the evolution of the different life history strategies found within the Rhizocephala, we have performed the first comprehensive phylogenetic analysis of the group. Our results indicate that Rhizocephala is monophyletic with a filter-feeding barnacle-like ancestor. The host-infective stage, the kentrogon larva, inserted in the lifecycle of the rhizocephalan suborder, Kentrogonida, is shown to be ancestral and most likely a homologue of the juvenile stage of a conventional thoracican barnacle. The mode of host inoculation found in the suborder Akentrogonida, where the last pelagic larval stage directly injects the parasitic material into the heamolymph of the host is derived, and has evolved only once within the Rhizocephala. Lastly, our results show that the ancestral host for extant rhizocephalans appears to be the anomuran crustaceans (Anomura), which includes hermit crabs and squat lobsters.  相似文献   

12.
Ulf Jondelius 《Hydrobiologia》1991,227(1):299-305
Anoplodiera voluta Westblad, Seritia elegans (Westblad) and Wahlia macrostylifera Westblad are species of the family Umagillidae living in the intestine of the holothurian Parastichopus tremulus. In all three species, part of the epidermis is unciliated, but unlike unciliated epidermis in the major parasitic flat-worm groups, it is cellular and has intraepithelial nuclei. The surface of the unciliated cells in A. voluta is convex with the cells separated by lateral gaps. The cells have two distinct regions: the basal, organelle-rich part and the apical part which contains few identifiable organelles except vesicles. In W. macrostylifera the unciliated cells have a flat surface and, between them, narrower gaps that in some cases widen to paracellular compartments below the cell surface. Apically the cells contain electron-dense vesicles, often in contact with the surface. S. elegans has unciliated cells separated by gaps. In all these species, apical vesicles indicate secretory activity. Comparison of the epidermis of these three species with the neodermis of the major parasitic flatworm groups within the Neodermata does not support a close relationship of the three to the Neodermata.  相似文献   

13.
The oogenesis of the acoel Actinoposthia beklemischevi can be divided into a previtellogenic and a vitellogenic stage. Maturing oocytes are surrounded by accessory cells (a.c.) that produce electrondense granules, the content of which is released into the space between the oocyte and a.c. and gives rise to a thin primary egg envelope. The a.c. may also contribute to yolk synthesis by transferring low molecular weight precursors to the oocyte. Two types of inclusion are produced in maturing oocytes. Type I inclusions are small, roundish granules produced by the Golgi complex. They have a proteinaceous non-polyphenolic content which is discharged in the intercellular space and produce a thicker secondary egg envelope. Type I inclusions represent eggshell-forming granules (EFGs). Type II inclusions are variably sized globules progressively changing their shape from round to crescent. They appear to be produced by the ER, contain glycoproteins and remain scattered throughout the cytoplasm in large oocytes. Type II inclusions represent yolk. The main features of oogenesis in Actinoposthia are: (a) EFGs have a non-polyphenolic composition; (b) the egg envelope has a double origin and is not sclerotinized; (c) yolk production appears to be autosynthetic. The present ultrastructural findings are compared with those from other Acoelomorpha and Turbellaria.  相似文献   

14.
Falleni  Alessandra  Lucchesi  Paolo  Gremigni  Vittorio 《Hydrobiologia》1998,383(1-3):215-226
The female gonad of Temnocephala dendyi and T. minor consists of a single germarium and two rows of vitellaria. It is enveloped by an extracellular lamina and accessory cells. Accessory cells are only peripherally located in the germarium while their cytoplasmic projections also fill the spaces between vitellocytes in the vitellarium. The main feature of oocyte maturation is the appearance of chromatoid bodies and the development of rough endoplasmic reticulum (R.E.R.) and Golgi complexes which appear to be correlated with the production of double-structured egg granules. The egg granules, which are localized in the cortical cytoplasm of mature oocytes, contain glycoproteins, are devoid of polyphenols and are similar in structure and composition to the cortical granules observed in some Digenea and Monogenea. Vitellocytes are typical secretory cells with well-developed R.E.R. and Golgi complexes which are involved in the production of shell globules and yolk. The multigranular pattern and the polyphenolic composition of the shell globules of the temnocephalids investigated are similar to those observed in other rhabdocoels, and in some Prolecithophora and Neodermata. This feature may represent a synapomorphy shared by these taxa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Spermatozoa of Myxinidocotyle californica from the hagfish Eptatretus stoutii and of Acanthocotyle lobianchi from the skate Raja clavata show a similar ultrastructure: two axoncmes of the 9 + 1 type in parallel with the nucleus-and one mitochondrion. In the released Acanthocotyle spermatozoa nucleus and mitochondrion both have a triangular cross-section. No cortical microtubules are present. The ultrastructure of these two acanthocotylid spermatozoa thus corresponds to sperm pattern 2 according to Justine et al. (1985). This pattern is derived from the more primitive pattern 1, which in the Monogenea is found only in the Oligonchoinea Bychowsky, 1937 or the Polyopisthocotylea sensu Justine et al.  相似文献   

16.
Abstract Spermiogenesis was studied by transmission electron microscopy in the acanthocotylid monogeneans Myxinidocotyle californica (from Eptatretus stoutii) and Acanthocotyle lobianchi (from Raja clavata). In Myxinidocotyle and Acanthocotyle, the zone of differentiation shows two 9+‘1’ axonemes, the elongating nucleus and mitochondrion, and a single cortical cytoplasmic microtubule. This single microtubule is found in the mature spermatozoon of both species and was also noted in capsalids. This requires a modified definition of ‘pattern 2’ of spermatozoa which becomes: ‘spermatozoa with two axonemes and no cortical microtubules, except one single element much shorter than the spermatozoon’. A very unusual structure was found in Myxinidocotyle, but not in Acanthocotyle: the centriolar derivative of one of the 9+‘1’ axonemes is made up of 18 diverging singlets of unequal length associated with electron-dense cytoplasm. This seems to be the first case of a centriolar derivative without nine-fold symmetry associated with an axoneme with nine-fold symmetry.  相似文献   

17.
Fine-structural features of female germ cells differentiating within the germaria of Otoplanella baltica and Notocaryoplanella glandulosa are documented and compared with those of other free-living platyhelminths having ectolecithal eggs.In these species, encompassed in the taxon Proseriata Lithophora, insemination of the germocytes occurs within the germaria. A sperm cell, that has penetrated a germocyte differs in special features from mature male germ cells found in the testes, in parts of the male genital system, or even in other regions of the organism. The hypothesis that dense bodies correspond to acrosomal material is supported.  相似文献   

18.
Justine J.-L., Lambert A. and Mattei X. 1985. Spermatozoon ultrastructure and phylogenetic relationships in the monogeneans (Platyhelminthes). International Journal for Parasitology15: 601–608. New observations reported in this study together with bibliographical data allow comparisons of spermatozoon ultrastructure in 28 genera of monogeneans, belonging to 19 families. The authors propose to compare and classify monogenean spermatozoa using two simple ultrastructural characteristics: (a) the number of axonemes, 1 or 2, (b) the presence or absence of cortical microtubules. These traits make it possible to group monogenean spermatozoa in four patterns. Pattern 1 (2 axonemes plus microtubules) is characteristic of the polyopisthocotyleans (9 families). The three other patterns are found in the monopisthocotyleans. Pattern 2 (2 axonemes without microtubules) is found in the Capsalidae and Dionchidae, which seem closely related, and also in the Udonellidae, Gyrodactylidae and Euzetrema. Pattern 3 (1 axoneme plus 1 altered axoneme plus microtubules) is found in the Monocotylidae and Loimoidae. Pattern 4 (1 axoneme without microtubules) is found in the Amphibdellatidae, Ancyrocephalidae, Calceostomatidae and Diplectanidae. A phylogeny of the monogeneans is drawn from the data of comparative spermatology; this scheme coincides in many points with the phylogeny of Lambert (1980) which was based on the study of chaetotaxy and ciliated cells of the oncomiracidium.  相似文献   

19.
Parasite life histories have been assumed to be shaped by their particular mode of existence. To test this hypothesis, we investigate the relationships between life-history traits of free-living and parasitic platyhelminthes. Using phylogenetically independent contrasts we examine patterns of interspecific covariation in adult size, progeny volume, daily fecundity, total reproductive capacity, age at first reproduction and longevity. The correlations obtained indicate a similar causal chain of life history variations for free-living and parasitic platyhelminthes. These results suggest that increased longevity favours delayed reproduction. Furthermore, growth pattern determines adult body size and age at maturity. For platyhelminthes, whether free-living or parasitic, the total reproductive capacity is found to be directly determined by the size of the worm. Within this group the parasitic way of life does not seem to influence the basic patterns of life history evolution. Received: 20 September 1997 / Accepted: 1 March 1998  相似文献   

20.
The female gonad of Prorhynchus is heterocellular (neoophoran organization) and consists of an unpaired, elongate germovitellarium enveloped by a finely granular extracellular lamina. It is composed of a posterior germinative area where early oocytes are randomly associated with differentiating vitellocytes and a growth area with follicular organization. In each follicle a single oocyte is surrounded by a layer of vitellocytes. By electron microscopy, the oocytes showed features typical of non-vitellogenic germ cells; they had chromatoid bodies, annulate lamellae, lipid droplets and R.E.R. and Golgi complexes producing small granules with a multilamellar pattern. Vitellocytes showed features typical of secretory cells with the R.E.R. and Golgi complex developed to a great extent and involved in the production of type A and type B globules, respectively. We speculate that type A globules are shell-globules and type B globules are yolk. The structure, composition and role of vitellocyte globules of Prorhynchus are compared with those of homologous inclusions from other Platyhelminthes.Abbreviations A type A globule - B type B globule - ECL extracellular lamina - GC Golgi complex - L lipid - RER rough endoplasmic reticulum - O oocyte - V vitellocyte  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号