首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Among monogeneans that display direct life cycles, plastic developmental strategies may have been selected to counter the lack of transmission opportunities. Within amphibian polystomatids, some species of the genus Polystoma develop into two different phenotypes depending on the host physiological stage to which free swimming larvae attach. When oncomiracidia infest old tadpoles, they develop slowly and migrate during host metamorphosis towards the bladder where they reach maturity. On the other hand when larvae infest young tadpoles, they develop rapidly into neotenic phenotypes that reproduce in the branchial chamber. These alternative developments are explored through experimental infestations with Polystoma gallieni, the specific polystome of the stripeless tree frog Hyla meridionalis. When oncomiracidia were left for 6 h in water in which young tadpoles had been previously maintained for one day, they mainly developed into the neotenic phenotype regardless of the tadpole stage they encountered later. This indicates that P. gallieni could collect released host-derived signals before physical contact with its host.  相似文献   

2.
Considering the addition of intermediate transmission steps during life cycle evolution, developmental plasticity, canalization forces and inherited parental effect must be invoked to explain new host colonization. Unfortunately, there is a lack of experimental procedures and relevant models to explore the adaptive value of alternative developmental phenotypes during life cycle evolution. However, within the monogeneans that are characterized by a direct life cycle, an extension of the transmission strategy of amphibian parasites has been reported within species of Polystoma and Metapolystoma (Polyopisthocotylea; Polystomatidae). In this study, we tested whether the infection success of Polystoma gallieni within tadpoles of its specific host, the Stripeless Tree Frog Hyla meridionalis, differs depending on the parental origin of the oncomiracidium. An increase in the infection success of the parasitic larvae when exposed to the same experimental conditions as their parents was expected as an adaptive pattern of non-genetic inherited information. Twice as many parasites were actually recorded from tadpoles infected with oncomiracidia hatching from eggs of the bladder parental phenotype (1.63 ± 0.82 parasites per host) than from tadpoles infected with oncomiracidia hatching from eggs of the branchial parental phenotype (0.83 ± 0.64 parasites per host). Because in natural environments the alternation of the two phenotypes is likely to occur due to the ecology of its host, the differential infection success within young tadpoles could have an adaptive value that favors the parasite transmission over time.  相似文献   

3.
The phylogenetic relationships of the families Polystomatidae and Sphyranuridae (subclass Polystomatoinea) within tetrapod monogenean parasites were investigated using partial 18S rDNA sequences. About 600 nucleotides of 11 species were sequenced, including 7 species of the most common subfamilies of Polystomatidae found in anurans and turtles, 1 species of the family Sphyranuridae parasitizing exclusively urodelans, and 3 species of the subclass Oligonchoinea infesting teleostean fishes. The phylogenetic analyses were performed using three reconstruction methods: neighbor-joining, maximum-parsimony, and maximum-likelihood. Polystomatoineans but not polystomatids were shown to be monophyletic. Within the polystomatoineans there are two clades: one includes the amphibian monogeneans (anuran polystomatids and urodelan sphyranurids) and the other includes the turtle polystomatids. Polystomatoineans may have coevolved with amphibian hosts, and an ancestral "polystome" dispersed at least 200 million years ago, either from the basal stem of lissamphibians or from an anuran ancestral stock, to freshwater turtles. Furthermore, the urodelan genus Sphyranura, initially assigned to the family Sphyranuridae on the basis of morphological and ontogenetic evidence, is clearly nested within polystomatids, suggesting that its systematic status must be revised. This supports recent findings which argue that species of the family Sphyranuridae may be paedomorphic parasites exclusively infesting neotenic mudpuppies.  相似文献   

4.
Cophylogenetic studies investigate the evolutionary trends within host-parasite associations. Examination of the different levels of fidelity between host and parasite phylogenies provides a powerful tool to inspect patterns and processes of parasite diversification over host evolution and geological times. Within the phylum Platyhelminthes, the monogeneans are mainly fish parasites. The Polystomatidae, however, are known from the sarcopterygian Australian lungfish and tetrapods such as amphibians, freshwater turtles, and the African hippopotamus. Cophylogenetic and biogeographic vicariance analyses, supplemented by molecular calibrations, showed that the Polystomatidae may track the evolutionary history of the first aquatic tetrapods in the Palaeozoic age. Evolutionary lines of the major polystome lineages would also be intimately related to the evolution of their hosts over hundreds of millions years. Since the Mesozoic, evolution of polystomes would have been shaped mainly by plate tectonics during the break-up of Gondwanaland and subsequent dispersal of ancestral neobatrachian host lineages. Therefore the Polystomatidae could serve as a novel model to improve cophylogenetic tools and to inspect a suite of questions about the evolution of vertebrate hosts. To cite this article: O. Verneau et al., C. R. Biologies 332 (2009).  相似文献   

5.
The endosymbiotic bacterium Wolbachia infects a wide range of arthropods and their relatives. It is an intracellular parasite transmitted through the egg from mother to offspring. Wolbachia can spread and persist through various means of host reproductive manipulation. How these different mechanisms of host manipulation evolved in Wolbachia is unclear. Which host reproductive phenotype is most likely to be ancestral and whether evolutionary transitions between some host phenotypes are more common than others remain unanswered questions. Recent studies have revealed multiple cases where the same Wolbachia strain can induce different reproductive phenotypes in different hosts, raising the question to what degree the induced host phenotype should be regarded as a trait of Wolbachia. In this study, we constructed a phylogenetic tree of Wolbachia and analyzed the patterns of host phenotypes along that tree. We were able to detect a phylogenetic signal of host phenotypes on the Wolbachia tree, indicating that the induced host phenotype can be regarded as a Wolbachia trait. However, we found no clear support for the previously stated hypothesis that cytoplasmic incompatibility is ancestral to Wolbachia in arthropods. Our analysis provides evidence for heterogeneous transition rates between host phenotypes.  相似文献   

6.
Insects tend to feed on related hosts. Coevolution tends to be dominated by interactions resulting from plant chemistry in defense strategies, and evolution of secondary metabolisms being in response to insect herbivory remains a classic explanation of coevolution. The present study examines whether evolutionary constraints existing in host associations of economically important fruit flies in the species‐rich tribe Dacini (Diptera: Tephritidae) and to what extent these species have evolved specialized dietary patterns. We found a strong effect of host phylogeny on associations on the 37 fruit flies tested, although the fruit fly species feeding on ripe commercially grown fruits that lost the toxic compounds after long‐term domestication are mostly polyphagous. We assessed the phylogenetic signal of host breadth across the fruit fly species, showing that the results were substantially different depending on partition levels. Further, we mapped main host family associations onto the fruit fly phylogeny and Cucurbitaceae has been inferred as the most likely ancestral host family for Dacini based on ancestral state reconstruction.  相似文献   

7.
Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite’s investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites.  相似文献   

8.
Among parasitic platyhelminths with complex life cycles, it has been well documented that transmission opportunities are the main forces shaping the diversity of life‐history traits and parasite developmental strategies. While deviations in the development pathway usually involve shortening of life cycles, their extension may also occur following perception of remaining time by parasites. Polystoma gallieni, the monogenean parasite of Hyla meridionalis, is able to trigger two alternative developmental strategies depending on the physiological stage of the tadpoles upon which larvae attach. The distribution and reproductive outputs of both resulting phenotypes were surveyed to address questions about the dynamics of transmission in natural environments. Because modifications in the completion of life cycles can have drawbacks which may perturb the dynamic equilibrium of the resulting host–parasite systems, experimental infestations were also performed to assess parasite–parasite interactions. Our results suggest that the bladder adult phenotype, which involves transmission between frogs and tadpoles, is supplied secondarily by the branchial phenotype which involves transmission between tadpoles and metamorphs. They also support the occurrence of finely tuned trade‐offs between hosts and parasites and highlight positive trends behind the extension of direct life cycles, in which host‐derived signals account for the remaining time to achieve parasitic transmission.  相似文献   

9.
The Polystomatidae is the only family within the Monogenea to parasitize sarcopterygians such as the Australian lungfish Neoceratodus poisteri and freshwater tetrapods (lissamphibians and chelonians). We present a phylogeny based on partial 18S rDNA sequences of 26 species of Polystomatidae and three taxon from the infrasubclass Oligonchoinea (= Polyopisthocotylea) obtained from the gills of teleost fishes. The basal position of the polystome from lungfish within the Polystomatidae suggests that the family arose during the evolutionary transition between actinopterygians and sarcopterygians, ca. 425 million years (Myr) ago. The monophyly of the polystomatid lineages from chelonian and lissamphibian hosts, in addition to estimates of the divergence times, indicate that polystomatids from turtles radiated ca. 191 Myr ago, following a switch from an aquatic amniote presumed to be extinct to turtles, which diversified in the Upper Triassic. Within polystomatids from lissamphibians, we observe a polytomy of four lineages, namely caudatan, neobatrachian, pelobatid and pipid polystomatid lineages, which occurred ca. 246 Myr ago according to molecular divergence-time estimates. This suggests that the first polystomatids of amphibians originated during the evolution and diversification of lissamphibian orders and suborders ca. 250 Myr ago. Finally, we report a vicariance event between two major groups of neobatrachian polystomes, which is probably linked to the separation of South America from Africa ca. 100 Myr ago.  相似文献   

10.
Despite the major role of genome size for physiology, ecology, and evolution, there is still mixed evidence with regard to proximate and ultimate drivers. The main causes of large genome size are proliferation of noncoding elements and/or duplication events. The relative role and interplay between these proximate causes and the evolutionary patterns shaped by phylogeny, life history traits or environment are largely unknown for the arthropods. Genome size shows a tremendous variability in this group, and it has a major impact on a range of fitness‐related parameters such as growth, metabolism, life history traits, and for many species also body size. In this study, we compared genome size in two major arthropod groups, insects and crustaceans, and related this to phylogenetic patterns and parameters affecting ambient temperature (latitude, depth, or altitude), insect developmental mode, as well as crustacean body size and habitat, for species where data were available. For the insects, the genome size is clearly phylogeny‐dependent, reflecting primarily their life history and mode of development, while for crustaceans there was a weaker association between genome size and phylogeny, suggesting life cycle strategies and habitat as more important determinants. Maximum observed latitude and depth, and their combined effect, showed positive, and possibly phylogenetic independent, correlations with genome size for crustaceans. This study illustrate the striking difference in genome sizes both between and within these two major groups of arthropods, and that while living in the cold with low developmental rates may promote large genomes in marine crustaceans, there is a multitude of proximate and ultimate drivers of genome size.  相似文献   

11.
12.
Sympatric populations can diverge when variation in phenology or life cycle causes them to mate at distinctly different times. We report patterns consistent with this process (allochronic speciation) in North American gall-forming aphids, in the absence of a host or habitat shift. Pemphigus populi-transversus Riley and P. obesinymphae Aoki form a monophyletic clade within the North American Pemphigus group. They are sympatric on the eastern cottonwood, Populus deltoides (Salicaceae), but have distinctly different life cycles, with sexual stages offset by approximately six months. Field evidence indicates that intermediate phenotypes do not commonly occur, and mitochondrial and bacterial endosymbiont DNA sequences show no maternal gene flow between the two species. Because a genetically distinct population of P. obesinymphae occurs in the southwestern United States on Populus fremontii, we consider the possibility of an initial allopatric phase in the divergence. We discuss the likely origins of the host use patterns in P. obesinymphae, and the larger sequence of evolutionary changes that likely led to the sympatric divergence of P. populi-transversus and P. obesinymphae. A plausible interpretation at this stage of investigation is that a shift in timing of the life cycle in an ancestral population, correlated with an underlying phenological complexity in its host plant, spurred divergence between the incipient species.  相似文献   

13.
A fuller understanding of the role of developmental bias in shaping large‐scale evolutionary patterns requires integrating bias (the probability distribution of variation accessible to an ancestral phenotype) with clade dynamics (the differential survival and production of species and evolutionary lineages). This synthesis could proceed as a two‐way exchange between the developmental data available to neontologists and the strictly phenotypic but richly historical and dynamic data available to paleontologists. Analyses starting in extant populations could aim to predict macroevolution in the fossil record from observed developmental bias, while analyses starting in the fossil record, particularly the record of extant species and lineages, could aim to predict developmental bias from macroevolutionary patterns, including the broad range of extinct phenotypes. Analyses in multivariate morphospaces are especially effective when coupled with phylogeny, theoretical and developmental models, and diversity–disparity plots. This research program will also require assessing the “heritability” of an ancestral bias across phylogeny, and the tendency for bias change in strength and orientation over evolutionary time. Such analyses will help find a set of general rules for the macroevolutionary effects of developmental bias, including its impact on and interactions with the other intrinsic and extrinsic factors governing the movement, expansion, and contraction of clades in morphospace.  相似文献   

14.
The complex life cycles of parasites are thought to have evolved from simple one-host cycles by incorporating new hosts. Nevertheless, complex developmental routes present parasites with a sequence of highly unlikely transmission events in order to complete their life cycles. Some trematodes like Coitocaecum parvum use facultative life cycle abbreviation to counter the odds of trophic transmission to the definitive host. Parasites adopting life cycle truncation possess the ability to reproduce within their intermediate host, using progenesis, without the need to reach the definitive host. Usually, both abbreviated and normal life cycles are observed in the same population of parasites. Here, we demonstrate experimentally that C. parvum can modulate its development in its amphipod intermediate host and adopt either the abbreviated or the normal life cycle depending on current transmission opportunities or the degree of intra-host competition among individual parasites. In the presence of cues from its predatory definitive host, the parasite is significantly less likely to adopt progenesis than in the absence of such cues. An intermediate response is obtained when the parasites are exposed to cues from non-host predators. The adoption of progenesis is less likely, however, when two parasites share the resource-limited intermediate host. These results show that parasites with complex developmental routes have transmission strategies and perception abilities that are more sophisticated than previously thought.  相似文献   

15.
Competition for resources is thought to play a critical role in both the origins and maintenance of biodiversity. Although numerous laboratory evolution experiments have confirmed that competition can be a key driver of adaptive diversification, few have demonstrated its role in the maintenance of the resulting diversity. We investigate the conditions that favour the origin and maintenance of alternative generalist and specialist resource-use phenotypes within the same population. Previously, we confirmed that competition for hosts among φ6 bacteriophage in a mixed novel (non-permissive) and ancestral (permissive) host microcosm triggered the evolution of a generalist phenotype capable of infecting both hosts. However, because the newly evolved generalists tended to competitively exclude the ancestral specialists, coexistence between the two phenotypes was rare. Here, we show that reducing the relative abundance of the novel host slowed the increase in frequency of the generalist phenotype, allowing sufficient time for the specialist to further adapt to the ancestral host. This adaptation resulted in ‘evolutionary rescue’ of the specialists, preventing their competitive exclusion by the generalists. Thus, our results suggest that competition promotes both the origin and maintenance of biodiversity when it is strong enough to favour a novel resource-use phenotype, but weak enough to allow adaptation of both the novel and ancestral phenotypes to their respective niches.  相似文献   

16.
Giovanni Strona 《Oikos》2015,124(6):685-690
Most parasites with complex life cycles exploit trophic webs to pass from host to host in order to develop and, eventually, reproduce. Thus predation constitutes the necessary route for transmission. Conversely, the transmission of parasites that use a single host to develop and reproduce should be, in principle, not particularly affected by host trophic ecology. Here I challenge this view, showing that predation may be relevant also for direct lifecycle parasites. I used a large dataset of fish trophic interactions to investigate if the degree of monogenean species overlap in predators and prey deviated from randomness. I demonstrated that predators and prey often share more monogenean parasite genera than explained by host habitat ecology, geographical distribution and phylogeny. This suggests that predation may play an important role in promoting monogenean host range expansion. In addition, a non‐negligible proportion of considered prey–predator pairs showed a significantly high overlap in their monogenean parasites at the species level. This may indicate a tendency of some monogenean parasites to evolve transmission strategies targeted towards host interactions. If this hypothesis is true, these monogenean parasites would be much more vulnerable to co‐extinction than previously thought. Synthesis Predation is not expected to play an important role in the ecology and evolution of simple life cycle parasites. Yet, several predator fish tend to share with their prey more monogenean parasites than one would expect predicted from their geographical distribution, habitat preference, and or phylogenetic relationships. This suggests that some monogenean parasites have evolved transmission strategies more targeted towards host interactions than towards species‐specific traits. If this hypothesis is supported, it would have strong implications on host–parasite evolutionary ecology, primarily, suggesting the existence of peculiar situations where some parasites have evolved high specialized host finding behaviors to expand their host range.  相似文献   

17.
In insects, whilst variations in life cycles are common, the basic patterns typical for particular groups remain generally conserved. One of the more extreme modifications is found in some subterranean beetles of the tribe Leptodirini, in which the number of larval instars is reduced from the ancestral three to two and ultimately one, which is not active and does not feed. We analysed all available data on the duration and size of the different developmental stages and compared them in a phylogenetic context. The total duration of development was found to be strongly conserved, irrespective of geographical location, habitat type, number of instars and feeding behaviour of the larvae, with a single alteration of the developmental pattern in a clade of cave species in southeast France. We also found a strong correlation of the size of the first instar larva with adult size, again regardless of geographical location, ecology and type of life cycle. Both results suggest the presence of deeply conserved constraints in the timing and energy requirements of larval development. Past focus on more apparent changes, such as the number of larval instars, may mask more deeply conserved ontogenetic patterns in developmental timing.  相似文献   

18.
We consider differences between dipteran, hymenopteran and coleopteran parasitoids in the following categories: taxonomic range and developmental stage of hosts attacked; habitats they are attacked in; developmental stage of the parasitoid contacting the host; occurrence of phoresy, and attacking hosts during flight. Using existing phylogenetic classifications we reconstruct possible ancestral conditions to the parasitoid clades in the three orders. By considering these as phylogenetic constraints and potentialities we attempt to account for the observed differences between the parasitoids within the orders.  相似文献   

19.
Phenotypic plasticity can influence evolutionary change in a lineage, ranging from facilitation of population persistence in a novel environment to directing the patterns of evolutionary change. As the specific nature of plasticity can impact evolutionary consequences, it is essential to consider how plasticity is manifested if we are to understand the contribution of plasticity to phenotypic evolution. Most morphological traits are developmentally plastic, irreversible, and generally considered to be costly, at least when the resultant phenotype is mis-matched to the environment. At the other extreme, behavioral phenotypes are typically activational (modifiable on very short time scales), and not immediately costly as they are produced by constitutive neural networks. Although patterns of morphological and behavioral plasticity are often compared, patterns of plasticity of life history phenotypes are rarely considered. Here we review patterns of plasticity in these trait categories within and among populations, comprising the adaptive radiation of the threespine stickleback fish Gasterosteus aculeatus. We immediately found it necessary to consider the possibility of iterated development, the concept that behavioral and life history trajectories can be repeatedly reset on activational (usually behavior) or developmental (usually life history) time frames, offering fine tuning of the response to environmental context. Morphology in stickleback is primarily reset only in that developmental trajectories can be altered as environments change over the course of development. As anticipated, the boundaries between the trait categories are not clear and are likely to be linked by shared, underlying physiological and genetic systems.  相似文献   

20.

Background  

The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号