首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
While there is agreement that both habitat quality and habitat network characteristics (such as patch size and isolation) contribute to the occupancy of patches by any given species, the relative importance of these factors is under debate. This issue is of fundamental ecological importance, and moreover of special concern for conservation biologists aiming at preserving endangered species. Against this background we investigated patch occupancy in the violet copper Lycaena helle, one of the rarest butterfly species in Central Europe, in the Westerwald area (Rhineland-Palatinate, Western Germany). Occupied (n = 102) differed from vacant (n = 128) patches in altitude, size, connectivity, availability of wind shelter, in the abundance of the larval host-plant, in the abundance of a grass species indicating favorable habitat conditions and in the abundance of nitrophilous plants. Overall, patch occupancy was primarily determined by patch size, connectivity and the abundance of the larval host plant, while all other parameters of habitat quality were of subordinate importance. Therefore, our findings suggest that even for extremely sedentary species such as L. helle habitat networks are decisive and—next to the preservation of habitat quality—need to be an integral part of any conservation management for this species.  相似文献   

2.
To conserve areas and species threatened by immediate landscape change requires that we make planning decisions for large areas in the absence of adequate data. Here we study the utility of broad-scale landscape metrics as predictors of species occurrence, especially for remote areas where there is a need to make the most of limited spatial and biological data. Bonobos (Pan paniscus) are endangered great apes endemic to lowland forests of the Democratic Republic of Congo. They are threatened by bushmeat hunting that is exacerbated by habitat fragmentation through slash-and-burn agriculture and timber harvest. We developed four landscape metrics —edge density (ED), COHESION, CONTAGION, and class area (CA)— that may serve as surrogates for measuring accessibility of areas to hunting in order to predict relative bonobo-habitat suitability. We calculated the metrics for the Maringa-Lopori-Wamba (MLW) landscape and evaluated them for utility in predicting bonobo-nest occupancy based on 2009 field data. Cross-validations showed that all four metrics performed similarly. However, forest ED was arguably the best predictor, with an overall classification accuracy of 72.1% in which 85% of known nest blocks (N = 124) were classified correctly. We demonstrated that for a relatively intact landscape and a mobile forest-dwelling species that is fairly tolerant of forest openings, forest fragmentation can still be an important predictor of species occurrence. We suggest that ED can be helpful when mapping bonobo habitat in MLW and can aid landscape-planning and conservation efforts. Our approach may be applied to other edge-sensitive species, especially where high-resolution data are deficient.  相似文献   

3.
Forecasting the impacts of climate change on species distribution has several implications for conservation. Plinia edulis is a rare and threatened tree species from Brazilian Atlantic Rainforest. In this study, we assessed the impact of global climate change on the distribution of P. edulis. Additionally, we evaluated the efficacy of the Brazilian protected network to conserve this species. Ecological niche models were built using the maximum entropy method based on occurrence records and environmental predictors. Models predicted a reduction of climatically suitable areas for P. edulis in all evaluated scenarios in the coming years. Furthermore, we observed that Brazilian protected areas (PAs) are ineffective to conserve this species. Given the fact that P. edulis is a promising tree species rarely found within Brazilian PAs and threatened by global climate change, we strongly recommend the cultivation of this multipurpose species in agroforestry systems, landscaping and homegardens in order to promote its conservation through sustainable use.  相似文献   

4.
Old hollow trees have declined in Europe and many saproxylic (i.e. wood-dwelling) invertebrates living on them are threatened. The aim of this study was to investigate to what extent artificial habitats can be exploited by saproxylic beetles. To mimic the conditions in tree hollows, we constructed wooden boxes filled with different combinations of substrates like oak saw dust, oak leaves, a dead hen (Gallus domesticus), chicken dung, lucerne flour or potatoes and placed them on tree trunks. To investigate the importance of distance from dispersal sources, we placed boxes at different distances (0–1,800 m) from three species-rich sites with high densities of hollow oaks. Over 3 years, 3,423 specimens of 105 saproxylic beetle species were caught in 47 boxes. Among beetles found in hollow oaks that were either tree-hollow species, bird nest species, or wood rot species, 70% were also found in the boxes. A dead hen added to the artificial wood mould gave a higher number of beetle specimens. The number of species associated with tree hollows in oak decreased with distance from sites with hollow oaks. In conclusion, the prospects for using artificial environments for boosting substrate availability, or to fill spatial and temporal gaps therein, for saproxylic beetles are good.  相似文献   

5.
Aim New protected areas should consider safeguarding high conservation value sites based on multiple criteria and not just the presence of a single endangered or charismatic species. However, the extent to which complementary criteria coincide is usually unknown. We use the case of Guaiacum sanctum (Zygopyllaceae), an endangered timber tree species, to explore whether the protection of forests where this species is most abundant would meet other complementary conservation goals, such as capturing regional plant biodiversity, protecting other threatened/endemic species or safeguarding ecosystem services. Location Yucatan Peninsula, southern Mexico. Methods We conducted an analysis of the structure, composition and diversity of tree communities (including stems ≥5 cm dbh) at eight G. sanctum forest sites. We identified endemic and threatened tree species and quantified above‐ground tree biomass and carbon storage in these G. sanctum forests. Results Guaiacum sanctum forests contain 35–59 tree species on plots as small as 1000 m2. The species composition of tree communities changed rapidly (high β‐diversity) across soil boundaries and rainfall regimes. Twenty‐one endemic and eight threatened tree species were recorded in our inventories. Individuals of G. sanctum represented up to 55% of the above‐ground carbon for trees ≥5 cm dbh. The high basal area of G. sanctum forests plus the high wood density, abundance, large size and longevity (more than 500 years) of G. sanctum and other tree species enhance the potential importance of these forests for carbon storage. Main conclusions A conservation strategy focused on protecting important populations of G. sanctum in the Yucatan Peninsula would have significant co‐benefits for conservation of regional tree species biodiversity and provision of critical ecosystem services. Our study illustrates a multiple criteria approach useful for the selection of areas with high conservation value on the basis of endemic, threatened species, species richness and ecosystem services.  相似文献   

6.
We compared the location of anuran site records with the protected area network of Australia. We determined how many sites fell within protected areas (PAs) and assessed whether the available distribution of record sites matched that which could be expected by random chance. We also determined the number of PAs that each species was located in and how many were larger (>1,000 ha) PAs. A total of 25,961 from 96,947 record sites (26.78%) for 211 anuran species fell within 1 of 7,416 International Union for the Conservation of Nature (IUCN) criteria “reserves” that protect 7,689,024 ha (10.54%) of mainland Australia. One hundred and sixty-nine species represented by >30 records had a mean 30.05% of record sites within PAs, with 36 species having >45% of record sites in PAs and 18 species <10% of record sites within PAs. Highly “reserved” species are typically montane, prefer rainforest, and have small distributional ranges. Poorly “reserved” species either occur in northern Australia or within highly productive and poorly protected agricultural lands of eastern and western Australia. Several species from coastal eastern Australia have relatively high proportions of record sites within PAs (e.g., Litoria olongburensis and Uperoleia tyleri), even though they are generally believed to be threatened by habitat loss. The number of records available for each species was related to the area of occupancy and the length of calling season, but not to the relative frequency of calling activity. The number of record sites in reserves was greater than expected by chance and most species of frogs are found in many reserves. Species dependent on native vegetation that are prevalent in agricultural areas represent the most pressing issue, as there is already low reservation of such habitats and the remaining native vegetation continues to be cleared.  相似文献   

7.
We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia—Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura—to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.  相似文献   

8.
Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional‐scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently‐collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2‐km spatial filter and by modeling separately two subregions separated by the 500‐m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground‐truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground‐truth sites. Similarly, a site habitat quality index at ground‐truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site‐based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field‐validated models of similar resolution would assist in guiding management of conservation‐dependent species.  相似文献   

9.
Restoring ponds for amphibians: a success story   总被引:1,自引:1,他引:0  
Large-scale restoration of quality habitats is often considered essential for the recovery of threatened pond-breeding amphibians but only a few successful cases are documented, so far. We describe a landscape-scale restoration project targeted at two declining species—the crested newt (Triturus cristatus Laur.) and the common spadefoot toad (Pelobates fuscus Wagler)—in six protected areas in southern and southeastern Estonia. The ponds were restored or created in clusters to (i) increase the density and number of breeding sites at local and landscape levels; (ii) provide adjacent ponds with differing depths, hydroperiods and littoral zones and (iii) restore an array of wetlands connected to appropriate terrestrial habitat. In only 3 years, where 22 of the 405 existing ponds (5%) were restored and 208 new ponds (51%) created, the number of ponds occupied by the common spadefoot toad increased 6.5 times. Concerning the crested newt and the moor frog (Rana arvalis Nilsson), the increase was 2.3 and 2.5 times, respectively. The target species had breeding attempts in most of the colonised ponds—even more frequently than common species. Also, the amphibian species richness was higher in the restored than in the untreated ponds. The crested newt preferably colonised ponds that had some submerged vegetation and were surrounded by forest or a mosaic of forest and open habitats. The common spadefoot toad favoured ponds having clear and transparent water. Our study reveals that habitat restoration for threatened pond-breeding amphibians can rapidly increase their numbers if the restoration is implemented at the landscape scale, taking into account the habitat requirements of target species and the ecological connectivity of populations. When the remnant populations are strong enough, translocation of individuals may not be necessary. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

10.
Knowledge on the structure and composition of the plant communities has enormous significance in conservation and management of forests. The present study aimed to assess the community attributes, viz., structure, composition and diversity in the moist and dry sal (Shorea robusta) forests in the West Bengal province of India and compare them with the other sal forests of India. The phytosociological data from these forests were quantitatively analysed to work out the species richness, diversity, evenness, dominance, importance value, stand density and the basal area. The analysis showed that plant richness and diversity in moist sal forests of northern West Bengal are higher than the dry sal forests of south-west Bengal; a total of 134 tree (cbh ≥30 cm), 113 shrub and 230 herb species were recorded in the moist sal forest compared to 35 tree, 41 shrub and 96 herb species in dry sal forest. Papilionaceae was observed to be the dominant family. Dry sal forests had higher tree dominance (0.81) and stand density (1,006 stems ha−1) but lower basal area (19.62 m2ha−1) while moist sal forest had lower tree dominance (0.18) and stand density (438 stems ha−1) but higher basal area (56.52 m2ha−1). Tree species richness and stem density across girth classes in both the types decreased from the smallest to largest trees, while the occurrence rate of species increased with increase in girth class. A t-test showed significant differences in species richness, basal area and the stand density at 95% confidence level (p = <0.05) in the two forest types. The CCA indicated very low overall match (canonical correlation value = 0.40) between the two sets of variables from moist and dry sal types. The differences in these forests could be attributed to the distinct variations in climatic conditions- mainly the rainfall, disturbance regimes and the management practices.  相似文献   

11.
The analysis presents earthworm distribution in eight designated tectonic units (C—Cyprus, EP—East Pondites, ET—East Taurus block, Sc—Sakarya continent, Kb—Kırşehir block, L—the Levant, TM—Taurus–Menderes block, WP—West Pondites) in the East Mediterranean region (EM). It represents a full list of earthworm species (N = 81) of the region and reveals significant faunal similarities between Sc + WP, and between Kb + TM. The new Sc + WP unit is characterized by the presence of archaic (Spermophorodrilus) as well as modern earthworm fauna. In contrast, the second newly established Kb + TM unit is characterized by poorly presented earthworm autochthonous fauna and by a lack of endemic species. The analysis done on the species list (N = 73) representing the autochthonous family Lumbricidae showed statistically supported separation of L and EP between themselves and from other designated units. The Levant, part of the Arabian tectonic plate, is characterized by a high level of endemism in ancient (Healyella) and modern (Dendrobaena, Perelia) genera, and by the lack of archaic genera. The EP harbors unique species representing archaic (Eophila), ancient (Healyella), and modern (Allolobophora, Aporrectodea, Dendrobaena and Eisenia) earthworm genera in the EM. The analysis also indicates origin of earthworm fauna in TM and faunistic relationships among the designated units. Clearly, the present-day division of the EM earthworm fauna shows recognizable influences of tectonic history.  相似文献   

12.
In order to assess the impact of seed removal and seedling establishment for four species of pines, we designed experiments with and without the exclusion of seed removers in three vegetation types (pine forest, oak-alder forest, and subalpine grassland). Seed removal was significantly different between species of pines (P < 0.01), as was the interaction between the vegetation types and category of exclusion (remover) (P < 0.0001). The significant difference in terms of seed removal was between P. patula and P. montezumae (33.0 and 17.9%, respectively). Seed removal was significant between pine forest—without exclusion (20.0%) versus oak-alder forest—without exclusion (7.0%). There was significant interaction between seedling establishment of the pine species and vegetation type (P < 0.0001). Highlighting differences between the pine forest—P. teocote (84.1%) versus oak-alder forest—P. patula (19.0%), oak-alder forest—P. pseudostrobus (45.0%), pine forest—P. patula (20.2%), pine forest—P. pseudostrobus (45.6%), subalpine grassland—P. montezumae (24.3%), subalpine grassland—P. patula (27.9%), and subalpine grassland—P. pseudostrobus (17.5%). The impact of the food preferences of rodents and other granivores for P. patula and P. pseudostrobus seeds, as well as the poor survival of seedlings of these species in the pine and oak-alder forest are both factors which may explain the dominance of P. teocote in the study region.  相似文献   

13.

Aim

We used data from aerial surveys of wolverine tracks collected in seven winters over a 10‐year period (2003–2012) within a 574,287 km2 study area to evaluate the broad‐scale pattern of wolverine occurrence across a remote northern boreal forest region, identifying areas of high and low occupancy.

Location

Northern Ontario, Canada.

Taxon

Wolverine (Gulo gulo Linnaeus, 1758).

Methods

We collected wolverine tracks and observations in 100‐km2 hexagonal survey units, making a total of 6,664 visits to 3,039 units, visiting each 1–9 times. We used hierarchical Bayesian occupancy modelling to model wolverine occurrence, and included covariates with the potential to affect detection and/or occupancy probability of wolverines.

Results

we detected wolverines on 946 visits, 14.2% of total visits. Probability of detecting a wolverine varied among years and between the two ecozones in the study area. Wolverine occupancy was negatively related to two important covariates, the geographical coordinate Easting and thawing degree‐days. A site occupancy probability map indicated that wolverine occupancy probabilities were highest, and standard error lowest, in the western and northern portions of the study area.

Main conclusions

The occupancy framework enabled us to use observation data from tracks of this elusive, wide‐ranging carnivore over a vast, remote area while explicitly considering detectability and spatial autocorrelation, yielding a map of probable wolverine distribution in northern Ontario that would not be possible using other methods of detection across a large region. With resource development pressures increasing in this globally significant region in the face of a changing climate, it is important to monitor changes in distribution of species like wolverines that have low population growth rates, large spatial requirements and sensitivity to human disturbance. This study demonstrates a relatively cost‐effective and non‐invasive alternative to monitoring based on wolverine harvest records, which have not been available since 2009 in Ontario due to changes in the provincial regulatory regime for this threatened species.  相似文献   

14.
Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R2 = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long‐term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support.  相似文献   

15.
Fragmentation represents a serious threat to biodiversity worldwide, however its effects on epiphytic organisms is still poorly understood. We study the effect of habitat fragmentation on the genetic population structure and diversity of the red-listed epiphytic lichen, Lobaria pulmonaria, in a Mediterranean forest landscape. We tested the relative importance of forest patch quality, matrix surrounding fragments and connectivity on the genetic variation within populations and the differentiation among them. A total of 855 thalli were sampled in 44 plots (400 m2) of 31 suitable forest fragments (beeches and oaks), in the Sierra de Ayllón in central Spain. Variables related to landscape attributes of the remnant forest patches such as size and connectivity and also the nature of the matrix or tree species had no significant effects on the genetic diversity of L. pulmonaria. Values of genetic diversity (Nei’s) were only affected by habitat quality estimated as the age patches. Most of the variation (76%) in all populations was observed at the smallest sampled unit (plots). Using multiple regression analysis, we found that habitat quality is more important in explaining the genetic structure of the L. pulmonaria populations than spatial distance. The relatively high level of genetic diversity of the species in old forest patches regardless of patch size indicates that habitat quality in a highly structured forest stand determines the population size and distribution pattern of this species and its associated lichen community. Thus, conservation programmes of Mediterranean mountain forests have to prioritize area and habitat quality of old forest patches.  相似文献   

16.
Goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), is a new invasive species in southern California, USA. The extent of the host range of this insect is not known, but this knowledge will have a major impact on assessment of the risks that this pest poses to oaks [Quercus spp. (Fagaceae)]. We conducted laboratory tests to determine the potential suitability of native and ornamental oak species for larvae and adults of A. auroguttatus. We infested 179 cut logs (from 163 different trees) with eggs or larvae, measured neonate survival and, after 5 months, counted feeding galleries, and noted the proportion of galleries with late instars. Initial larval survival was generally high when larvae penetrated the phloem (range: 62–98% among oak species), and low by the time larvae began to feed at the phloem/xylem interface (range: 0–25% among oak species). The majority of larvae that established a visible feeding gallery survived to the fourth instar (total of 73% for all oak species). Larval galleries were established with greater frequency in red oaks (Section Lobatae) compared with other oaks (19 vs. 7 or 4%). All red oaks tested (Q. agrifolia Née, Q. kelloggii Newberry, and Q. wislizeni A. DC.) were likely suitable hosts for larvae. Larvae were apparently able to feed on some of the other oaks (Q. chrysolepis Leibmann, Q. suber L., Q. lobata Née, and Q. douglasii Hook & Arn), although it remains unclear whether these species would be preferred hosts under natural conditions. Adult longevity and fecundity varied little by species of oak foliage fed to adults. The host range of A. auroguttatus is likely limited by suitability of oak species for the larval rather than the adult life stage. Results support published field observations that red oaks are more suitable hosts than white oaks.  相似文献   

17.
We characterized eight microsatellite loci for snouted treefrogs in the Scinax perpusillus species group, a group of hylid frogs endemic to the Atlantic Coastal Forest of Brazil, and tested their utility in mainland and island species of the complex. All eight loci were polymorphic in one population of S. perpusillus; four of the loci showed excess homozygosity and three of those deviated from Hardy–Weinberg expectations, possibly due to null alleles, inbreeding, or population structure in sampled individuals. Six loci amplified and were polymorphic in S. arduous, S. argyreornatus, and S. faivovichi, but only one in S. alcatraz. These markers will be useful for quantifying effects of habitat fragmentation on population genetic diversity and connectivity in coastal and island populations of this threatened species group.  相似文献   

18.
Conservation of threatened tree species requires basic information on growth rates and ages. This information is lacking for many species, but can be obtained relatively easily from tree ring analysis. We studied four threatened Vietnamese species: three conifers from high-elevation forests (Calocedrus macrolepis, Dacrydium elatum and Pinus kwangtungensis) and one broad-leaved species from lowland forest (Annamocarya sinensis). We collected increment cores from remnant populations in protected areas and measured ring width. We built chronologies and found significant correlations with rainfall (all species) and temperature (two species), indicating that rings were formed annually. Diameter-age trajectories showed that species reached reproductive size at 60–80 years. Maximum observed ages were 128–229 years. Some species showed large variation in long-term growth rates among individuals, which was partially explained by strong persistence of growth differences. We also assessed whether growth rates changed over time. For certain size categories in some species, we found higher recent growth rates of juvenile trees compared to those in the distant past. This shift requires a cautious interpretation, but is consistent with a CO2 fertilization effect. For other size categories, we found contrasting results: extant large trees had higher growth rates as small juveniles compared to extant small trees. Such correlations, which we found for all species, suggest a ‘juvenile selection effect’: the preferential survival of fast-growing juveniles to the canopy. Information on ages, historical growth rates and juvenile selection effect is relevant for the planning of conservation actions.  相似文献   

19.
The expected presence/absence of a target species outside the area of actual observations is commonly estimated using statistical models or decision criteria. This investigation demonstrates a similarity-based solution for predictive mapping as an alternative to generalizing models. The maps of the expected distribution of 12 orchids were created using find sites from field observations and absence sites generated onto the observation track. The expected presence/absence of a species in a location was calculated according to the similarity between the location and selected examples of presence and absence sites. A machine learning system selected the best predictive sets for each species out of 161 cartographic and remote sensing features. The usefulness of the predictive distribution maps was expressed as the ratio of the density of find sites per track in the predicted presence area relative to the density per track in the predicted absence area. The predictive mapping was more efficient for Dactylorhiza incarnata, D. russowii, Gymnadenia conopsea, and Goodyera repens. Soil properties and the proportion of find sites for the other species in the vicinity were the most indicative site characteristics. The rarer species were found to be better indicators of the occurrence of the other species than were the more common orchids. The proposed approach—to direct subsequent field observations to sites where the occurrence of the target species was predicted but has not yet been recorded—helped discover new populations of orchids and enhance the representativeness of absence sites.  相似文献   

20.
There is growing evidence that tree turnover in tropical forests has increased over the last decades in permanent sample plots. This phenomenon is generally attributed to the increase in atmospheric CO2, but other causes cannot be ruled out. A proper evaluation of historical shifts in tree turnover requires data over longer periods than used so far. Here, we propose two methods to use tree-ring data for detecting long-term changes in tree turnover. We apply these methods to two non-pioneer tree species in a Bolivian moist forest. First, we checked for temporal changes in the frequency of growth releases to determine whether this frequency has increased over time. Second, we calculated the degree of temporal autocorrelation—a measure that indicates temporal changes in growth rates that are likely related to canopy dynamics—and checked for changes in this parameter over time. In addition, we performed analyses that corrected for ontogenetic increases in the measures used by analyzing residuals from size–growth relations. No evidence for the occurrence of a large-scale disturbance was found as we did not observe synchronization in the occurrence of releases in time. For both species, we did not detect changes in autocorrelation or release frequency over the last 200–300 years. Only in one size category, we found increased release frequency over time, probably as a result of a remaining ontogenetic effect. In all, our analyses do not provide evidence for long-term changes in tree turnover in the study area. We discuss the suitability of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号