首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Public goods games have become the mathematical metaphor for game theoretical investigations of cooperative behavior in groups of interacting individuals. Cooperation is a conundrum because cooperators make a sacrifice to benefit others at some cost to themselves. Exploiters or defectors reap the benefits and forgo costs. Despite the fact that groups of cooperators outperform groups of defectors, Darwinian selection or utilitarian principles based on rational choice should favor defectors. In order to overcome this social dilemma, much effort has been expended for investigations pertaining to punishment and sanctioning measures against defectors. Interestingly, the complementary approach to create positive incentives and to reward cooperation has received considerably less attention—despite being heavily advocated in education and social sciences for increasing productivity or preventing conflicts. Here we show that rewards can indeed stimulate cooperation in interaction groups of arbitrary size but, in contrast to punishment, fail to stabilize it. In both cases, however, reputation is essential. The combination of reward and reputation result in complex dynamics dominated by unpredictable oscillations.  相似文献   

2.
The hawk-dove (HD) game, as defined by Maynard Smith [1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge], allows for a polymorphic fitness equilibrium (PFE) to exist between its two pure strategies; this polymorphism is the attractor of the standard replicator dynamics [Taylor, P.D., Jonker, L., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145-156; Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge] operating on an infinite population of pure-strategists. Here, we consider stochastic replicator dynamics, operating on a finite population of pure-strategists playing games similar to HD; in particular, we examine the transient behavior of the system, before it enters an absorbing state due to sampling error. Though stochastic replication prevents the population from fixing onto the PFE, selection always favors the under-represented strategy. Thus, we may naively expect that the mean population state (of the pre-absorption transient) will correspond to the PFE. The empirical results of Fogel et al. [1997. On the instability of evolutionary stable states. BioSystems 44, 135-152] show that the mean population state, in fact, deviates from the PFE with statistical significance. We provide theoretical results that explain their observations. We show that such deviation away from the PFE occurs when the selection pressures that surround the fitness-equilibrium point are asymmetric. Further, we analyze a Markov model to prove that a finite population will generate a distribution over population states that equilibrates selection-pressure asymmetry; the mean of this distribution is generally not the fitness-equilibrium state.  相似文献   

3.
Voluntary participation in public goods games (PGGs) has turned out to be a simple but effective mechanism for promoting cooperation under full anonymity. Voluntary participation allows individuals to adopt a risk-aversion strategy, termed loner. A loner refuses to participate in unpromising public enterprises and instead relies on a small but fixed pay-off. This system leads to a cyclic dominance of three pure strategies, cooperators, defectors and loners, but at the same time, there remain two considerable restrictions: the addition of loners cannot stabilize the dynamics and the time average pay-off for each strategy remains equal to the pay-off of loners. Here, we introduce probabilistic participation in PGGs from the standpoint of diversification of risk, namely simple mixed strategies with loners, and prove the existence of a dynamical regime in which the restrictions ono longer hold. Considering two kinds of mixed strategies associated with participants (cooperators or defectors) and non-participants (loners), we can recover all basic evolutionary dynamics of the two strategies: dominance; coexistence; bistability; and neutrality, as special cases depending on pairs of probabilities. Of special interest is that the expected pay-off of each mixed strategy exceeds the pay-off of loners at some interior equilibrium in the coexistence region.  相似文献   

4.
It is one of the fundamental problems in biology and social sciences how to maintain high levels of cooperation among selfish individuals. Theorists present an effective mechanism promoting cooperation by allowing for voluntary participation in public goods games. But Nash's theory predicts that no one can do better or worse than loners (players unwilling to join the public goods game) in the long run, and that the frequency of participants is independent of loners’ payoff. In this paper, we introduce a degree of rationality and investigate the model by means of an approximate best response dynamics. Our research shows that the payoffs of the loners have a significant effect in anonymous voluntary public goods games by this introduction and that the dynamics will drive the system to a fixed point, which is different from the Nash equilibrium. In addition, we also qualitatively explain the existing experimental results.  相似文献   

5.
The puzzle of the emergence of cooperation between unrelated individuals is shared across diverse fields of behavioural sciences and economics. In this article we combine the public goods game originating in economics with evolutionary approaches traditionally used in biology. Instead of pairwise encounters, we consider the more complex case of groups of three interacting individuals. We show that territoriality is capable of promoting cooperative behaviour, as in the case of the Prisoner's Dilemma. Moreover, by adding punishment opportunities, the readiness to cooperate is greatly enhanced and asocial strategies can be largely suppressed. Finally, as soon as players carry a reputation for being willing or unwilling to punish, highly cooperative and fair outcomes are achieved. This group-beneficial result is obtained, intriguingly, by making individuals more likely to exploit their co-players if they can get away with it. Thus, less-cooperative individuals make more-cooperative societies.  相似文献   

6.
The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical models for cooperation in evolutionary game theory, such as the Prisoner's Dilemma and public goods games. Traditional approaches to studying the problem of cooperation assume constant population sizes and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games, cooperation can gain a foothold if the population density depends on the average population payoff. Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game dynamics can generate stable coexistence of cooperators and defectors in public goods games. However, this mechanism fails for pairwise Prisoner's Dilemma interactions and the population is driven to extinction. Our model represents natural extension of replicator dynamics to populations of varying densities.  相似文献   

7.
8.
Investment in a common resource shared by all players is difficult to evolve despite higher returns because a non-investor (free-rider) always receives more than an investor (altruist). This situation is referred to as the Tragedy of the Commons and is often observed in various biological systems including environmental problems of human society. Punishment and reputation are effective mechanisms but require cooperator's ability to identify free-riders. Volunteering can work in anonymous public goods games but this requires voluntary participation, which is not always the case. Here, we show that the evolution of altruism is possible in anonymous and obligate public goods games if we consider the spatiotemporal dynamics of the common resource that incorporate spatial diffusion and internal dynamics of the commons. The investors' strategy to counter free-riders is to increase population density and to outnumber them with the common resource level kept as low as that of the free-riders.  相似文献   

9.
The Public Goods Game is one of the most popular models for studying the origin and maintenance of cooperation. In its simplest form, this evolutionary game has two regimes: defection goes to fixation if the multiplication factor r is smaller than the interaction group size N, whereas cooperation goes to fixation if the multiplication factor r is larger than the interaction group size N. Hauert et al. [Hauert, C., Holmes, M., Doebeli, M., 2006a. Evolutionary games and population dynamics: Maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B 273, 2565-2570] have introduced the Ecological Public Goods Game by viewing the payoffs from the evolutionary game as birth rates in a population dynamic model. This results in a feedback between ecological and evolutionary dynamics: if defectors are prevalent, birth rates are low and population densities decline, which leads to smaller interaction groups for the Public Goods game, and hence to dominance of cooperators, with a concomitant increase in birth rates and population densities. This feedback can lead to stable co-existence between cooperators and defectors. Here we provide a detailed analysis of the dynamics of the Ecological Public Goods Game, showing that the model exhibits various types of bifurcations, including supercritical Hopf bifurcations, which result in stable limit cycles, and hence in oscillatory co-existence of cooperators and defectors. These results show that including population dynamics in evolutionary games can have important consequences for the evolutionary dynamics of cooperation.  相似文献   

10.
11.
We consider the population dynamics of two competing species sharing the same resource, which is modeled by the carrying capacity term of logistic equation. One species (farmer) increases the carrying capacity in exchange for a decreased survival rate, while the other species (exploiter) does not. As the carrying capacity is shared by both species, farmer is altruistic. The effect of continuous spatial structure on the performance of such strategies is studied using the reaction diffusion equations. Mathematical analysis on the traveling wave solution of the system revealed; (1) Farmers can never expel exploiters in any traveling wave solution. (2) The expanding velocity of the exploiter population invading the farmer population can be analytically determined and it depends only on a cost of altruism and the diffusion coefficients while it is independent of the benefit of altruism. (3) When the effect of altruism is small, the dynamics of the invasion of exploiters obeys the Fisher-KPP equation. Numerical calculations confirm these results.  相似文献   

12.
Evolution in finite populations with infinitely many types   总被引:1,自引:0,他引:1  
  相似文献   

13.
An evolutionary game model is developed that incorporates both spatial dispersion and density effects in the evolutionary dynamic. It is shown that a stable equilibrium (e.g. an evolutionarily stable strategy) of the non-dispersed frequency dynamic becomes a stable equilibrium of the larger system if population density stabilizes at these fixed frequencies. It is also shown, by example, that other equilibria, whose frequencies change from one location to another, may appear when dispersal rates are relatively small.Research supported by Natural Sciences and Engineering Research Council of Canada Operating Grant A6187Research supported by Natural Sciences and Engineering Research Council of Canada Operating Grant A7822  相似文献   

14.
Any mechanism of language acquisition can only learn a restricted set of grammars. The human brain contains a mechanism for language acquisition which can learn a restricted set of grammars. The theory of this restricted set is universal grammar (UG). UG has to be sufficiently specific to induce linguistic coherence in a population. This phenomenon is known as "coherence threshold". Previously, we have calculated the coherence threshold for deterministic dynamics and infinitely large populations. Here, we extend the framework to stochastic processes and finite populations. If there is selection for communicative function (selective language dynamics), then the analytic results for infinite populations are excellent approximations for finite populations; as expected, finite populations need a slightly higher accuracy of language acquisition to maintain coherence. If there is no selection for communicative function (neutral language dynamics), then linguistic coherence is only possible for finite populations.  相似文献   

15.
Journal of Mathematical Biology - Two major forces shaping evolution are drift and selection. The standard models of neutral drift—the Wright–Fisher (WF) and Moran processes—can...  相似文献   

16.
17.
18.
Chen X  Liu Y  Zhou Y  Wang L  Perc M 《PloS one》2012,7(5):e36895
The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.  相似文献   

19.
On the basis of some principles from the philosophy of science, the inadequacy of the ESS-theory as introduced by Maynard Smith and Price as a biological theory is discussed, and an improved ESS-theory for finite populations is presented which can adopt the ideas of the original formalism, although modified. Resulting are explicit conditions on the population sizes that ensure certain strategies to be evolutionarily stable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号