首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Mature grain from 31 rice ( Oryza sativa L.) cultivars grown in the same location was analyzed for soluble sugar content to determine quantitative differences in this parameter. Cultivar variation in caryopsis sucrose content was 4-fold ranging from 15 to 59 μmol sucrose (g fresh weight)−1. Soluble reducing sugar ranged from 7 to 15 μmol hexose (g fresh weight)−1. Soluble sugar content was much greater in the outer part of the grain than in the endosperm. Caryopsis enzyme activities were measured in 8 cultivars having a range of grain sucrose content. No relationship between grain sucrose content of these cultivars and the level of enzymes of sucrose metabolism, glycolysis, and oxidative pentose pathway was established. Caryopsis respiration after 1 h of imbibition also was not related to the amount of soluble sugars available in the grain among these 8 cultivars. The results show that there are significant differences in the sugar-accumulating capacity of the caryopsis of different rice cultivars. The detection of a fructose 2,6-bisphosphate-sensitive, PPi: fructose 6-phosphate phosphototransferase (EC 2.7.1.90) in the endosperm suggests the presence of a regulatory mechanism for sucrose/starch partitioning established in other plant tissues.  相似文献   

3.
套袋对梨果实发育过程中糖组分及其相关酶活性的影响   总被引:3,自引:0,他引:3  
以翠冠和黄金梨为试材,测定套袋和未套袋(对照)梨果实发育时期果实中蔗糖、葡萄糖、果糖和山梨醇含量以及蔗糖代谢相关酶酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分积累与酶活性的关系进行了分析.结果表明:(1)两梨品种套袋果实在发育过程中蔗糖、葡萄糖、果糖、山梨醇和糖代谢相关酶活性变化趋势与对照基本一致,套袋果实糖含量均低于对照但差异不显著,而各相关酶活性在两类果实间差异表现各异.(2)在梨果实发育早期,果实中以分解酶类为主,糖分积累低;发育后期以合成酶类为主,糖分积累多.(3)两品种套袋和对照果实AI活性与葡萄糖含量均呈显著或极显著正相关,SS合成方向活性与蔗糖含量均为极显著正相关,且翠冠对照果SPS活性与蔗糖含量呈极显著正相关.可见,套袋通过提高果实发育早期转化酶(Inv)活性,降低果实后期蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)的活性来影响糖分积累,从而影响梨果品质.  相似文献   

4.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

5.
Sugars as signal molecules in plant seed development.   总被引:11,自引:0,他引:11  
U Wobus  H Weber 《Biological chemistry》1999,380(7-8):937-944
Higher plants as sessile organisms react very flexible to environmental changes and stresses and use metabolites like glucose, sucrose and nitrate not only as nutrients but also as signals as part of their life strategies. The role of metabolites as signal molecules has attracted considerable interest during recent years. Data reviewed here for developing plant seeds suggest a trigger function of especially sugars also in development in that metabolic regulatory control can override developmental regulation, i.e., the developmental programme only continues normally if a certain metabolic state is sensed at a given time point in a given cell or tissue. Several experimental strategies have provided mainly correlative evidence that certain sugar levels and/or the resulting changes in osmotic values are necessary within defined tissues or cells to maintain a distinct stage of differentiation or to proceed with the developmental programme. In young legume seeds, but certainly also in other tissues, a high hexose (probably mainly glucose) level seems to maintain the capacity of cells to divide whereas - later in seed development - a certain sucrose level is necessary to induce storage-associated cell differentiation. A major determinant of embryo hexose levels in young legume seeds is an apoplastic invertase preferentially expressed in the inner cell layers of the seed coat. The enzyme cleaves the incoming photoassimilate sucrose into glucose and fructose. During development the tissue harbouring the invertase is degraded in a very specific spatial and temporal pattern as part of the developmental programme and is thus creating steep glucose gradients within the cotyledons. These gradients can be measured at nearly cellular resolution and were found to be correlated positively with cell division rate and negatively with cell differentiation and storage activities. A hexose and a sucrose transporter accumulating only in the epidermal cell layer of the cotyledons seem to be essential in creating and maintaining these gradients. To gain further insights into the role of metabolites, especially sugars, as triggers of developmental processes we foremost have to identify receptor molecules already characterised in yeast, and to describe and understand the signal transduction networks involved.  相似文献   

6.
7.
通过测定不同发育时期肉苁蓉和寄主梭梭体内主要糖类物质含量和蔗糖代谢相关酶活性,以研究寄生植物与寄主植物的糖代谢及其关系。结果表明:未寄生肉苁蓉的梭梭以积累葡萄糖为主,而寄生肉苁蓉的梭梭在夏季休眠期以积累葡萄糖为主,进入秋季旺盛生长期时以积累蔗糖为主。肉苁蓉的糖分积累与梭梭不同,己糖含量约占可溶性总糖的62.45%,而蔗糖仅为可溶性总糖的4.98%,故肉苁蓉为己糖积累型。寄主梭梭同化枝内蔗糖磷酸合成酶活性较转化酶活性和蔗糖合成酶活性低,其中寄生肉苁蓉的梭梭的分解酶类活性高于未寄生肉苁蓉的梭梭。肉苁蓉体内转化酶活性较低,而蔗糖合成酶和蔗糖磷酸合成酶活性较高,且蔗糖合成酶活性高于蔗糖磷酸合成酶活性,表现为肉苁蓉中的分解酶类活性高于合成酶类活性,较高的分解酶类活性促进了蔗糖的分解,从而促进了糖分由寄主梭梭向肉苁蓉的不断转移。总体来看,肉苁蓉和寄主梭梭体内糖分的代谢主要以蔗糖合成酶为主,其它2种酶为辅协同参与调控。  相似文献   

8.
Both sucrose and amino acids accumulate in desiccation-tolerant leaf material of the C(4) resurrection plant, Sporobolus stapfianus Gandoger (Poaceae). The present investigation was aimed at examining sucrose phosphate synthase (SPS) activity and various metabolic checkpoints involved in the co-ordination of carbon partitioning between these competing pathways during dehydration. In the initial phase of dehydration, photosynthesis and starch content declined to immeasurable levels, whilst significant increases in hexose sugars, sucrose, and amino acids were associated with concomitant significant increases in SPS and pyruvate kinase (PK) activities, and maximal activity levels of phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and NADH-dependent glutamate synthase (NADH-GOGAT). The next phase of dehydration was characterized by changes in metabolism coinciding with net hexose sugar phosphorylation. This phase was characterized by a further significant increase in sucrose accumulation, with increased rates of net sucrose accumulation and maximum rates of SPS activity measured under both saturating and limiting (inhibitory) conditions. SPS protein was also increased. The stronger competitive edge of SPS for carbon entering glycolysis during hexose phosphorylation was also demonstrated by the further decrease in respiration and the simultaneous, significant decline in both PEPCase and PK activities. A decreased anabolic demand for 2-oxoglutarate (2OG), which remained constant, was shown by the co-ordinated decrease in GOGAT. It is proposed that the further increase in amino acids in this phase of dehydration may be in part attributable to the breakdown of insoluble proteins.  相似文献   

9.
测定和分析2个品种甘蔗节间蔗糖含量与和蔗糖代谢相关的4种酶活性之间关系的结果表明:节间蔗糖含量与酸性转化酶活性成极显著负相关,与蔗糖磷酸合成酶活性呈显著正相关。从通径分析结果可知,4种关键酶中可溶性酸性转化酶和蔗糖磷酸合成酶是对蔗糖含量贡献程度最大的2个酶.  相似文献   

10.
11.
12.
Sucrose accumulated during dehydration is a major potential energy source for metabolic activity during rehydration. The objective of the present study was to investigate aspects of leaf sucrose metabolism during the rehydration of desiccation-tolerant Sporobolus stapfianus Gandoger (Poaceae) over a 10-day period. Comparison was then made to sucrose metabolism during the rehydration of both desiccation-tolerant excised leaf material (dehydrated attached to the parent plant) and desiccation-sensitive leaf material (dehydrated detached from the parent plant to prevent the induction of tolerance) over a 48-h period. The pattern of sugar mobilization and glycolytic enzyme activity during the rehydration of the desiccation-tolerant excised leaves was similar to that in leaves attached to the parent plants. Significant breakdown of sucrose was not apparent in the initial phase of rehydration, suggesting the utilization of alternate substrates for respiratory activity. The desiccation-tolerant excised tissues provided a suitable control to compare the metabolism of rehydrating desiccation-sensitive material. In contrast to the tolerant tissues, sucrose breakdown in the sensitive leaves commenced immediately after watering and the accumulation in hexose sugars was inversely proportionate to the decrease in sucrose content. Hexokinase (EC 2.7.1.1), PFK (ATP phosphofructokinase, EC 2.1.7.11), aldolase (EC 4.1.2.13), enolase (EC 4.2.1.11), and PK (pyruvate kinase, EC 2.7.1.40) activity levels were significantly lower in the desiccation-sensitive material during rehydration.  相似文献   

13.
In sugarcane, increased sink demand has previously been shown to result in increased photosynthetic rates that are correlated with a reduction in leaf hexose concentrations. To establish whether sink limitation of photosynthesis is a result of sugar accumulation in the leaf, excision and cold-girdling techniques were used to modify leaf sugar concentrations in pot-grown sugarcane. In excised leaves that were preincubated in darkness for 3h, sucrose accumulation was reduced but accumulated again upon transfer to the light, while hexose concentrations remained lower than in controls (7.7 micromol mg(-1)FW versus 18.6 micromol mg(-1)FW hexose in controls). These results were associated with a 66% and 59% increase in photosynthetic assimilation (A) and electron transport rate (ETR), respectively, compared to controls maintained in the light. Similar increases in photosynthesis were observed when dark-treated leaves were supplied with 5mM sorbitol, but not when supplied with 5mM sucrose. Further analyses of (14)C-labeled sugars indicated rapid turnover between sucrose and hexose. Cold-girdling (5 degrees C) increased sucrose and hexose levels and resulted in a decline of photosynthetic rates over 5d (48% and 35% decline in assimilation rate and ETR, respectively). These sugar-induced changes in photosynthesis were independent of changes in stomatal conductance. This study demonstrates that the down-regulation of photosynthesis in response to culm sugar accumulation reported previously could be due to the knock-on effect of accumulation of sugar in leaf tissue, and supports the contention that hexose, rather than sucrose, is responsible for the modulation of photosynthetic activity.  相似文献   

14.
The major carbohydrates stored in carrots are sucrose, glucose and fructose. The ratio of sucrose to reducing sugars varies between cultivars, with early forcing types generally having a higher level of reducing sugars while storage types have a greater proportion of sucrose.In an early forcing cultivar, Super Sprite, high acid invertase activity was correlated with low levels of stored sucrose. As acid invertase activity decreased, the levels of reducing and non-reducing sugars appeared to be related to a balance between alkaline invertase and sucrose synthetase activities.Foliar applications of gibberellic acid at 35 and 42 days after sowing reduced the root/shoot ratio while similar applications of chlormequat chloride marginally increased the ratio. Both growth regulators temporarily increased sucrose stograge, but only gibberellic acid consistently reduced hexose accumulation.Gibberellic acid reduced acid invertase activity following both applications while only reducing the activities of sucrose synthetase after the first application and alkaline invertase after the second application, respectively. Chloremequat chloride increased acid invertase activity after the first application but otherwise has no effect on the activities of the enzymes studied. The significance of changes in assimilate partitioning are discussed in relation to published schemes on carbohydrate storage in root vegetables.  相似文献   

15.
Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.  相似文献   

16.
17.
The present study aimed to clarify the relationship between sugars and vitamin C in fruit. The objective was to determine whether vitamin C content was regulated by sugar content due to the role of sugar as a precursor for vitamin C. During summer, maximal content in sugar and vitamin C were found in both genotypes tested Solanum lycopersicon ‘Cervil’ and ‘Levovil’. During autumn, fruit pruning increased fruit size and hexose content but fruit vitamin C content did not increase. Therefore sugar substrate was not limiting for vitamin C synthesis during autumn. We demonstrated for two cultivars, ‘Cervil’ and ‘Levovil’, with different sugar accumulation profiles during ripening, that sugar content was not determinant in the regulation of vitamin C content. The strong correlation observed between sugars and vitamin C in ‘Cervil’ was due to their concomitant increase during fruit ripening.  相似文献   

18.
Bamboo is one of the fastest growing plants in the world, but their shoot buds develop very slowly. Information about the sugar storage and metabolism during the shoot growth is lacking. In the present study, we determined the activity of sucrose and starch metabolizing enzymes during the developmental period of Fargesia yunnanensis from shoot buds to the young culms that have achieved their full height. The soluble sugars and starch contents were also determined and analyzed in shoot buds and shoots at different developmental stages. The results showed that there were higher sucrose contents in shoot buds than shoots, which coincides with the sweeter taste of shoot buds. As the shoot buds sprouted out of the ground, the starch and sucrose were depleted sharply. Coupled with this, the activity of soluble acid invertase (SAI), cell wall-bound invertase (CWI), sucrose synthase at cleavage direction (SUSYC) and starch phosphorylase (STP) increased significantly in the rapidly elongating internodes. These enzymes dominated the rapid elongation of internodes. The activities of SAI, CWI, SUSYC and STP and adenosine diphosphate-glucose pyrophosphorylase were higher as compared to other enzymes in the shoot buds, but were far lower than those in the developing shoots. The slow growth of shoot buds was correlated with the low activity of these enzymes. These results complement our understanding of the physiological differences between shoot buds and elongating shoots and ascertain the physiological mechanism for the rapid growth of bamboo shoots.  相似文献   

19.
20.
The aim of this work was to find out how the sugars in the endosperm of oilseed rape contribute to the flux of oil synthesis. While the hexose content of the liquid endosperm decreased during development the sucrose content increased. It is important to understand the relative rates of use of the endosperm sugars for two reasons. Firstly we need to know which sugars are used, and at what stages in development, in order to understand the roles of enzymes involved in their metabolism. Secondly, changes in sugar concentration have been implicated in the regulation of expression of genes determining storage-product synthesis [see Weber, Borisjuk and Wobus (1997) Trends Plant Sci. 2, 169-174, for review]. The rate of consumption of sugar is one factor governing its concentration. We present data showing both the concentration-dependence of conversion of sugar to oil, and the in vivo concentrations of sugars; we relate these data sets to each other and discuss the effects of the intracellular pool of sucrose. Glucose, fructose and sucrose are all substrates for oil synthesis, but the rates of their use (particularly sucrose) are underestimated because of dilution by sucrose from the intracellular pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号