首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that incubation of rat liver microsomes with N-hydroxy-2-acetylaminofluorene (N-OH-AAF) leads to formation of a 2-nitrosofluorene-membrane lipid adduct. This adduct exists as a nitroxyl free radical, termed N-O-LAF, in its oxidized state. When microsomes were incubated with the sulfhydryl binding agent, rho-hydroxymercuribenzoate, a larger amount of N-OL-LAF formed. We interpret this as a slowdown in the rate of endogenous chemical reduction of carcinogen-membrane lipid adduct. In this paper we present evidence that N-OH-AAF is deacetylated by a microsomal enzyme to form N-hydroxy-2-aminofluorene and this is then oxidized to 2-nitrosofluorene which adds covalently to membrane lipid double bonds to form N-O-LAF. Various antioxidants, peroxidase inhibitors, and P450 substrates and inhibitors were ineffective in altering the amount of N-O-LAF formed from N-OH-AAF; but two esterase inhibitors, dietyl-rho-nitrophenylphosphate and alpha-toluene-sulfonyl fluoride, prevented N-O-LAF formation. Of the following purified enzymes tested: porcine liver carboxyl esterase, pepsin, chymotrypsin, cathepsin D, ficin, papain, leucine aminopeptidase, Naja naja phospholipase, acetylcholinesterase (type I), trypsin (type I and V) and epoxide hydrase; only carboxyl esterase was effective in deacetylating N-OH-AAF.  相似文献   

2.
Metabolism of triphenylene by liver microsomes from control, phenobarbital(PB)-treated rats and 3-methylcholanthrene(MC)-treated rats as well as by a purified system reconstituted with cytochrome P-450c in the absence or presence of purified microsomal epoxide hydrolase was examined. Control microsomes metabolized triphenylene at a rate of 1.2 nmol/nmol of cytochrome P-450/min. Treatment of rats with PB or MC resulted in a 40% reduction and a 3-fold enhancement in the rate of metabolism, respectively. Metabolites consisted of the trans-1,2-dihydrodiol as well as 1-hydroxytriphenylene, and to a lesser extent 2-hydroxytriphenylene. The (-)-1R,2R-enantiomer of the dihydrodiol predominated (70 to 92%) under all incubation conditions. Incubation of racemic triphenylene 1,2-oxide with microsomal epoxide hydrolase produced dihydrodiol which was highly enriched (80%) in the (-)-1R,2R-enantiomer. Experiments with 18O-enriched water showed that attack of water was exclusively at the allylic 2-position of the arene oxide, indicating that the 1R,2S-enantiomer of the oxide was preferentially hydrated by epoxide hydrolase. Thiol trapping experiments indicated that liver microsomes from MC-treated rats produced almost exclusively (greater than 90%) the 1R,2S-enantiomer of triphenylene 1,2-oxide whereas liver microsomes from PB-treated rats formed racemic oxide. The optically active oxide has a half-life for racemization of only approximately 20 s under the incubation conditions. This study may represent the first attempt to address stereochemical consequences of a rapidly racemizing intermediary metabolite.  相似文献   

3.
Cytochrome P-455 nm complex formation in phenobarbital induced rat liver microsomes was investigated using both an NADPH/O2-dependent monooxygenase system and a peroxygenase/peroxidase system where hydrogen peroxide was substituted for NADPH. The substrates tested were the enantiomers of four 1-alkyl-substituted 2-phenylethanamines (unbranched 1-alkyl substituents, comprising one to four carbons), S(+)- and R(-)-N-hydroxyamphetamine and racemic mixtures of N-hydroxy-1-phenyl-2-butanamine and N-hydroxy-3-methyl-1-phenyl-2-butanamine. During NADPH/O2-dependent metabolism the amines showed a positive correlation between extent of complex formation and lipophilicity; furthermore the S(+)-isomers gave rise to larger amounts of complex than the corresponding R(-)-analogues. With the hydroxylamines the ability to form complexes was greater than with any of the amines but no definite difference was seen among the hydroxylamines. In the peroxygenase system the hydroxylamines still gave larger amounts of complex than the amines but the differences seen within the homologous series of chiral amines when using the monooxygenase system were no longer observed. Although the quantitative trends in complex formation seen in the monooxygenase system were non-existent when H2O2 was substituted for NADPH, mere qualitative rules still seemed to apply; substrates which failed to give the complex during NADPH-dependent metabolism (2-phenylethanamine, phentermine, N-hydroxyphentermine and phenylacetone oxime) were inactive also in the peroxygenase system. The results substantiate the notion that the monooxygenase and peroxygenase reaction mechanisms of cyt. P-450 follow similar but not identical pathways.  相似文献   

4.
This laboratory has described the azoreduction of p-dimethylaminoazobenzene (1c) by rat liver microsomal cytochrome P-450. To elucidate the mechanisms involved, the reduction of structurally related azobenzenes by hepatic microsomes was investigated. High substrate reactivity was observed for 1c, its corresponding secondary (1a) and primary (1b) amines and p-hydroxyazobenzene (1d). In contrast, only negligible rates were obtained for unsubstituted azobenzene (1g), hydrazobenzene (2g), p-isopropylazobenzene (1e) and 1f, the benzoylamide derivative of 1b. These results clearly indicate that electron-donating groups, such as hydroxyl or primary, secondary and tertiary amines, are essential for binding of azo dye carcinogens to liver microsomal cytochrome P-450 and, by implication, their enzymic reduction. No inhibition of azoreduction of 1c or 1d was obtained by addition of 1e, 1g, or 2g to the reaction mixture. In the presence of hepatic microsomes, a type I binding spectrum was obtained for 1d and type II binding spectra for 1a, 1b and 1c, the reactive azo dyes. In contrast, very weak binding was observed for the unreactive compounds 1e, 1f, 1g and 2g. Thus, there is good correlation between binding and substrate reactivity. The apparent lack of binding may explain the inability of the non-reactive compounds to inhibit azoreduction. The difference in the reduction rate observed for 1g vs. 1d suggested that hydroxylation would facilitate the reduction of an otherwise non-reactive azo dye. Support for such a mechanism was obtained in two experiments. In the first, marked facilitation of azoreduction of both the inactive compounds, 2g and 2f, was seen when they were incubated with microsomes under aerobic conditions where preliminary hydroxylation can occur. In the second, azobenzene was initially incubated aerobically with microsomes from phenobarbital- or beta-naphthoflavone-induced rats. The hydroxyazobenzene formed was then readily reduced anaerobically by microsomes from untreated rats.  相似文献   

5.
The N-formyl, N-acetyl and N-propionyl derivatives of N-hydroxy-trans-4-aminostilbene (N-OH-AS), N-hydroxy-4-aminobiphenyl (N-OH-ABP) and N-hydroxy-2-aminonaphthalene (N-OH-AN) were synthesized and examined for their mutagenicities in Salmonella typhimurium TA 98. The N-formyl derivatives were direct-acting mutagens possibly due to hydrolysis, either spontaneously or by bacterial enzymes to hydroxylamines. Their mutagenicities were enhanced by rat liver microsomes and cytosol. All acetyl and propionyl derivatives required activation by either liver cytosol or microsomes. NADPH slightly decreased the microsome-mediated mutagenicities of the N-acyl derivatives of N-OH-AN. However, it greatly enhanced the cytosol-mediated mutagenicities of these hydroxamic acids, probably due to stabilization of their hydroxylamine derivatives. The mutagenicities reported here do not correlate with previously reported carcinogenicity data. Thus, data obtained in Salmonella mutagenicity studies may not necessarily directly reflect carcinogenic potential in mammalian systems due to the different mechanisms of activation.  相似文献   

6.
The present study provides strong evidence for the involvement of rat liver microsomal cytochrome b5 in the first reduction step of fatty acid chain elongation. The rate of reoxidation of NADH-reduced microsomal cytochrome b5 was markedly stimulated (up to 3-fold) by the addition of increasing concentrations of beta-ketohexadecanoyl-CoA (1-8 microM). A quantitative analysis of product formation, the effect of cyanide, and anaerobiosis completely exclude the possibility that desaturase activity accounted for the beta-ketohexadecanoyl-CoA-induced stimulation of the cytochrome b5 reoxidation rate. Using liver microsomes from untreated rats, the beta-keto substrate was found to stimulate the rate of reoxidation of cytochrome b5 by 30%. However, when liver microsomes from fat-free diet rats were employed the stimulation was more than 3-fold, suggesting that the beta-ketoacyl-CoA reductase is inducible by a high carbohydrate, fat-free diet. This study also provides evidence for the noninvolvement of cytochrome b5 in the terminal reaction step (second reduction step of chain elongation), which is catalyzed by the trans-2-enoyl-CoA reductase. Although trans-2-hexadecenoyl-CoA significantly stimulated the NADH-reduced cytochrome b5 reoxidation rate under aerobic conditions, it did not have any stimulatory effect under anaerobic conditions. One interpretation of these results is that the trans-2-hexadecenoyl-CoA is substrate for the microsomal delta 9 desaturase system. Consistent with this conclusion was the fact that the trans-2-hexadecenoyl-CoA inhibited the liver microsomal delta 9 desaturation of stearoyl-CoA to oleoyl-CoA.  相似文献   

7.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

8.
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.  相似文献   

9.
6-Nitrochrysene, 6-aminochrysene and several of their metabolites were assayed for mutagenic activity at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in DNA-repair-proficient Chinese hamster ovary (CHO-K1) cells and excision-repair-deficient CHO-UV5 cells. Mutagen-DNA adducts were analyzed by 32P-postlabeling in cells treated under the conditions of the mutagenicity assay and compared with the adduct patterns produced from the in vitro reaction of metabolites of 6-nitrochrysene and 6-aminochrysene with calf-thymus DNA. The mutagenic activities of the test compounds in the presence of a liver homogenate (S9) fraction from Aroclor 1254-pretreated rats, expressed as the number of mutants per 10(6) cells per nmole test compound per ml, in CHO-K1 and CHO-UV5 cells, respectively, were as follows: 6-nitrochrysene, 0.3 and 4; 6-aminochrysene, 35 and 117; 6-nitrochrysene-1,2-dihydrodiol, 1 and 6; 6-aminochrysene-1,2-dihydrodiol, 488 and 644; chrysene (run as a positive control), 12 and 28. 6-Nitrosochrysene was a direct-acting mutagen, yielding 127 and 618 mutants per 10(6) cells per nmole per ml in CHO-K1 and CHO-UV5 cells, respectively. Mutagen-DNA adduct analysis indicated that cells treated with 6-aminochrysene in the presence of S9 or 6-nitrosochrysene in the absence of S9 contained an adduct pattern identical to that derived from the in vitro reaction of N-hydroxy-6-aminochrysene with calf-thymus DNA. Cells treated with 6-aminochrysene-1,2-dihydrodiol plus S9 contained a single mutagen-DNA adduct that was distinct from those derived from N-hydroxy-6-aminochrysene. Based on comparison with previous studies, this adduct is presumed to be derived from 1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-aminochrysene. Cells treated with 6-nitrochrysene plus S9 and 6-nitrochrysene-1,2-dihydrodiol plus S9 contained a single major chromatographically identical adduct that was apparently derived from N-hydroxy-6-aminochrysene-1,2-dihydrodiol. The results indicate that 6-nitrochrysene, 6-aminochrysene and their metabolites are mutagenic in CHO cells, but that the major activation pathway for 6-nitrochrysene and 6-nitrochrysene-1,2-dihydrodiol in this system differs from previously described pathways.  相似文献   

10.
In a polyuridylic acid (poly(U)) stimulated in vitro assay, there is an age-related reduction in polyphenylalanine synthesis with mouse liver microsomes. As measured by the incorporation of leucine under the same conditions, old microsomes make fewer errors in translation than do young ones. Old microsomes have a higher requirement for Mg2+ than young for the optimal synthesis on both acids, suggesting an age-related deterioration in poly(U) complexing ability.  相似文献   

11.
Prostaglandin H synthase oxidizes arachidonic acid to prostaglandin G2 (PGG2) via its cyclooxygenase activity and reduces PGG2 to prostaglandin H2 by its peroxidase activity. The purpose of this study was to determine if endogenously generated PGG2 is the preferred substrate for the peroxidase compared with exogenous PGG2. Arachidonic acid and varying concentrations of exogenous PGG2 were incubated with ram seminal vesicle microsomes or purified prostaglandin H synthase in the presence of the reducing cosubstrate, aminopyrine. The formation of the aminopyrine cation free radical (AP.+) served as an index of peroxide reduction. The simultaneous addition of PGG2 with arachidonic acid did not alter cyclooxygenase activity of ram seminal vesicle microsomes or the formation of the AP.+. This suggests that the formation of AP.+, catalyzed by the peroxidase, was supported by endogenous endoperoxide formed from arachidonic acid oxidation rather than by the reduction of exogenous PGG2. In addition to the AP.+ assay, the reduction of exogenous versus endogenous PGG2 was studied by using [5,6,8,9,11,12,14,15-2H]arachidonic acid and unlabeled PGG2 as substrates, with gas chromatography-mass spectrometry techniques to measure the amount of reduction of endogenous versus exogenous PGG2. Two distinct results were observed. With ram seminal vesicle microsomes, little reduction of exogenous PGG2 was observed even under conditions in which all of the endogenous PGG2 was reduced. In contrast, studies with purified prostaglandin H synthase showed complete reduction of both exogenous and endogenous PGG2 using similar experimental conditions. Our findings indicate that PGG2 formed by the oxidation of arachidonic acid by prostaglandin H synthase in microsomal membranes is reduced preferentially by prostaglandin H synthase.  相似文献   

12.
The mechanism of mammary carcinogenesis by N-hydroxy-2-FBS, a highly potent mammary carcinogen for the female rat by ip administration, has been investigated. Previous work in vivo indicating hydrolytic cleavage of the nitrogen-sulfur bond has been confirmed with the use of sonicates of mammary gland. One of the products of the hydrolysis was N-hydroxy-2-FA identified by its conversion to 2-FA. Since carcinogenicity tests by local application showed that N-hydroxy-2-FA was not carcinogenic for the mammary gland, desulfonylation of N-hydroxy-2-FBS by mammary gland does not account for mammary carcinogenesis. N-Hydroxy-2-FBS applied directly to the mammary gland was not carcinogenic and 2-nitrosofluorene, the product of the spontaneous decomposition of N-hydroxy-2-FBS, exhibited only weak carcinogenicity upon local application. In contrast, N-hydroxy-2-FAA, a urinary metabolite of N-hydroxy-2-FBS, was highly carcinogenic by local application and very likely mediates the action of N-hydroxy-2-FBS. A metabolic pathway for the conversion of N-hydroxy-2-FBS to N-hydroxy-2-FAA is presented. This pathway involves the intermediate formation, by mammary gland or liver, of N-hydroxy-2-FA. The site of the subsequent acetylation of the hydroxylamine is unknown at present although the mammary gland appears to be excluded.  相似文献   

13.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

14.
The reduction of highly purified cytochrome P-450 from rabbit liver microsomes under anaerobic conditions requires 2 electrons per molecule. Similar results were obtained with dithionite, NADPH in the presence of NADPH-cytochrome P-450 reductase, or a photochemical system as the electron donor, with CO or other ligands, with substrate or phosphatidylcholine present, after denaturation to form cytochrome P-420, or with cytochrome P-450 partially purified from rat or mouse liver microsomes. The reduced cytochrome P-450 donates 2 electrons to dichlorophenolindophenol or to cytochrome c. Reoxidation of reduced cytochrome P-450 by molecular oxygen restores a state where 2 electrons from dithionite are required for re-reduction. Although these unexpected findings indicate the presence of an electron acceptor in addition to the heme iron atom, significant amounts of non-heme iron, other metals or cofactors, or disulfide bonds were not found, and free radicals were not detected by electron paramagnetic resonance spectrometry. Resolution of the cytochrome with acetone and acid yielded the apoenzyme, which did not accept electrons, and ferriprotoporphyrin IX, which accepted a single electron. A reconstituted hemoprotein preparation with the spectral characteristics of cytochrome P-420 accepted as much as 0.7 extra electron equivalent per heme. The midpoint oxidation-reduction potential of purified cytochrome P-450 from rabbit liver microsomes at pH 7.0 is -330 mv, and with CO present this value is changed to about -150 mv. The oxidation-reduction potential is unaffected by the presence of phosphatidylcholine or benzphetamine, a typical substrate. Laurate, aminopyrine, and benzphetamine undergo hydroxylation in the presence of chemically reduced cytochrome P-450 and molecular oxygen. Neither NADPH nor the reductase is required for substrate hydroxylation under these conditions.  相似文献   

15.
The rate of reduction of cytochrome P450 in hepatic microsomes in the presence of NADPH has been measured with a dual wavelength stopped-flow spectrophotometer. The results obtained, with microsomes prepared from phenobarbital-pretreated rats, indicate that the reduction process is biphasic and most probably composed of two concurrent first-order reactions. The rate constant for the reduction of cytochrome P450 in the fast phase in the presence of ethylmorphine is 1.74 s?1. Since approximately 50% or more of the cytochrome P450 is reduced in the fast phase under these conditions, the rate of reduction of cytochrome P450 is approximately 150 nmol min?1 (mg of protein)?1. Under similar conditions the rate of ethylmorphine N-demethylation is 8.6 nmol min?1 (mg of protein)?1. Thus the rate-limiting step in ethylmorphine N-demethylation cannot be the introduction of the first electron into cytochrome P450 by NADPH-cytochrome P450 reductase.  相似文献   

16.
D A Haugen  M J Peak 《Mutation research》1983,116(3-4):257-269
We observed that complex mixtures of aromatic compounds isolated from a coal-derived oil suppressed the mutagenic activity of the indirect mutagens benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 2-aminofluorene, and 2-acetylaminofluorene as measured in the Salmonella/microsome mutagenicity assay, using strain TA98 and metabolic activation with Aroclor-induced rat-liver S9 or microsomes. The mixture also inhibited S9-dependent benzo[a]pyrene metabolism and covalent binding to DNA in a cell-free system. The mixture did not suppress the activity of either the direct acting mutagens 2-nitrofluorene and benzo[a]pyrene diol-epoxide, or of the indirect mutagen N-hydroxy-2-acetylaminofluorene which requires a microsomal deacetylase for metabolic activation. Spectrophotometric measurements showed that components of the mixture bound to microsomal cytochrome P-450. The mixture did not inhibit microsomal NADPH-cytochrome c (P-450) reductase. These observations show that the mixtures inhibited metabolic activation by the microsomal monooxygenase system, probably by binding of unidentified components to cytochrome P-450. The resulting inhibition of mutagenesis may have implications for risk estimates for the mixtures we examined as well as for other types of complex mixtures for which similar inhibitory effects have been observed.  相似文献   

17.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

18.
Indomethacin-treated bovine iris-ciliary body microsomes (IBIM) have been studied for their ability to convert PG endoperoxides into either thromboxane-A2 (TxA2)-like or prostacyclin (PGI2)-like activity. The biological activity of the ocular tissue microsomes were compared with either indomethacin-treated human platelet microsomes (for TxA2-like activity) or rabbit aorta microsomes (for PGI2-like activity) under appropriate incubation conditions. No evidence could be found for the formation of TxA2-like activity from PG endoperoxides by the IBIM. In contrast, when the IBIM were incubated with PGH2 for 1 min at 22 degrees C without cofactors, PGI2-like activity was produced, causing profound relaxation of the isolated dog coronary artery preparation without contracting the rabbit aorta and inhibiting arachidonic acid-induced platelet aggregation. Equivalent quantities of boiled IBIM failed to alter the biological activity of PGH2 under identical conditions. Tranylcypromine (500 microgram/ml) completely abolished the appearance of PGI2-like activity. Furthermore, the PGI2-like activity found was stable for 10 min at 22 degrees C at pH 8.5 but completely lost under similar conditions at pH 5.5. It is concluded that microsomal preparations of normal bovine iris-ciliary body can synthesize PGI2-like activity in substantial amounts but not TxA2-like activity.  相似文献   

19.
Incubation of liver microsomes from hibernating ground squirrel with GDP-[14C]mannose and exogenous dolichyl phosphate resulted in the synthesis of dolichyl phosphate [14C]mannose. The mannosyltransferase activity was about 3-fold higher in microsomes from hibernating ground squirrels than in those from active animals. Incubation for 30 min of liver microsomes from hibernating animals with dolichyl pyrophosphate N,N'-diacetyl-[14C]chitobiose and GDP-[14C]mannose led to the synthesis of lipid-[14C]trisaccharide. When liver microsomes were incubated with lipid-[14C]trisaccharide and unlabelled GDP-mannose, lipid-tetra- to heptasaccharides were discovered in the chloroform-methanol (2:1) extract. Since, under the experimental conditions, negligible synthesis of dolichyl phosphate mannose was observed, it was assumed that GDP-mannose was a donor of mannose in the conversion of lipid-trisaccharide into lipid-oligosaccharides containing 2-5 mannose residues.  相似文献   

20.
ESR spin trapping measurements demonstrate generation of hydroxyl (.OH) radical from reduction of vanadate by rat liver microsomes/NADH without exogenous H2O2. Catalase decreases the .OH signal while increasing a vanadium(4+) signal. Addition of superoxide dismutase (SOD) or measurements under an argon atmosphere show decreased .OH radical production. The results suggest that during the one-electron vanadate reduction process by microsomes/NADH, molecular oxygen is reduced to H2O2, which then reacts with vanadium (4+) to generate .OH radical via a Fenton-like mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号