首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance Raman spectra of cytochrome oxidase solubilized in Tween 20 and sodium cholate, and excited at 413.1 nm have been recorded. Differences in the resonance Raman spectra of the two preparations are minimal indicating that the local environment of the hemes is similar in the two preparations. As in the work of Salmeen, et al. (1973) (Biochem. Biophys. Res. Commun. 52, 1100) the strongest band appears at 1358 cm-1. Some of the other bands differ slightly in their band shapes and frequencies when compared to their spectra; these differences can be accounted for by differences in resonance enhancement of the various bands wnen exciting at 441.6 and 413.1 nm. A study of the region from 1350 to 1380 cm-1 as a function of laser intensity (10--130 mW on sample) indicate that the doublet reported by Salmeen, et al. at 1358 and 1372 cm-1 is a result of photoreduction of the preparations. In samples to which potassium ferricyanide had been added, broad luminescence bands appear at 476 and 641 nm from which it is inferred that catalytic amounts of flavin in the preparations are photoreduced providing reducing equivalents to cytochrome oxidase.  相似文献   

2.
Raman spectra have been recorded for native and selenium substituted adrenodoxin in dilute solution. Adrenodoxin shows three bands at 397, 350 and 297 cm?1, all polarized, which can be associated with the iron-sulfur core. Selenium substitution leaves the 350 cm?1 band essentially unshifted, but the other two bands disappear and are replaced by new bands at 355 and 263 cm?1. The 350 cm?1 band is assigned to stretching of iron-sulfur (cysteine) bonds, while the 397 and 297 cm?1 bands are associated with vibrations of the labile sulfur atoms. The iron-selenium charge transfer bands were observed at 438 and 480 nm for the oxidized form and at 580 nm for the reduced form. The reduced selena-adrenodoxin displayed absorption maxima at 4, 450 and 5, 550 cm?1, which can be assigned to the d-d transitions of high-spin ferrous ion. From this data and the reported g-values of electron paramagnetic resonance signals, the spin-orbit coupling constants were calculated to be 170 and 210 cm?1 for the respective d-d transitions.  相似文献   

3.
Abstract

Poly(dG-dC)?poly(dG-dC) at low salt concentration (0.1 M NaCl) and at high salt concentration (4.5 M NaCl) has been studied by Raman resonance spectroscopy using two excitation wavelengths: 257 nm and 295 nm. As resonance enhances the intensity of the lines in a proportion corresponding to the square of the molar absorption coefficient, the intensities of the lines with 295 nm wavelength excitation are enhanced about sevenfold during the B to Z transition.

With 257 nm excitation wavelength the 1580 cm?1 line of guanosine is greatly enhanced in the Z form whereas with 295 nm excitation several lines are sensitive to the modifications of the conformation: the guanine band around 650 cm?1 and at 1193 cm?1 and the bands of the cytosines at 780 cm?1, 1242 cm?1 and 1268 cm?1.

By comparison with the U.V. resonance Raman spectra of DNA, we conclude that resonance Raman spectroscopy allows one to characterize the B to Z transition from one line with 257 nm excitation wavelength and from three lines with 295 nm excitation. The conjoined study of these four lines should permit to observe a few base pairs being in Z form in a DNA.  相似文献   

4.
We report the resonance Raman spectra in the frequency range 300–1800 cm?1 of Fe (III)-ovotransferrin and Fe (III)-human serum transferrin in aqueous solution at about 10?4M protein concentration. This is the first observation of resonance Raman scattering ascribable to amino acid ligand vibrational modes of a nonheme iron protein. The resonance Raman spectra of the transferrins are similar except that the resonance band near 1270 cm?1 is shifted to a higher frequency for Fe(III)-human serum transferrin than that for Fe(III)-ovotransferrin. The resonance Raman bands observed near 1170, 1270, 1500 and 1600 cm?1 may reflect resonance enhancement of p-hydroxy-phenyl frequencies of tyrosine residues and/or imidazolium frequencies of histidine residues.  相似文献   

5.
Resonance Raman (RR) spectra excited at 632.8 nm within a charge transfer absorption band were obtained for a catalytic intermediate, the purple complex of D-amino acid oxidase with D-proline or D-alanine as a substrate. The resonance enhanced Raman lines around 1605 and 1360 cm?1 in either of the complexes were suggested to be derived from vibrational modes of reduced flavin molecule. Since the highest energy band at 1692 cm?1 in the RR spectrum with D-alanine was shifted to 1675 cm?1 upon [15N] substitution of alanine and ammonium, this Raman line in the spectrum with D-alanine or the line at 1658 cm?1 with D-proline is assigned to the CN stretching mode of an imino acid corresponding to each amino acid. These results confirm the concept that the purple intermediate of D-amino acid oxidase consists of reduced flavin and an imino acid.  相似文献   

6.
The Raman spectrum (441.6 nm excitation) of protocatechuate 3,4-dioxygenase (PCD) from Pseudomonas putida shows resonance enhanced bands at 1605, 1504, 1270, 858, and 830 cm?1 which are due to the p-hydroxyphenyl group of tyrosine coordinated to iron. In addition, we observe strong resonance enhanced bands at 592 and 524 cm?1 and weak (presumably iron-ligand) vibrations at 465, 423, and 371 cm?1. Recent publications of the Raman spectrum of PCD from Pseudomonas aeruginosa (Tatsuno et al, J. Am. Chem. Soc. 100, 4614–4615 (1978) and Keyes et al, Biochem. Biophys. Res. Comm. 83, 941–945 (1978) using 488 and 514 nm excitation did not report these bands. Our 441.6 nm excitation Raman spectrum of human serum transferrin, another metalloprotein with an iron-tyrosine linkage, does not show the 592 and 524 cm?1 bands and has only two very weak bands at about 423 and 364 cm?1. We discuss several interpretations of these data.  相似文献   

7.
With (resonance) Raman microscospectroscopy, it is possible to investigate the chemical constitution of a very small volume (0.5 fl) in a living cell. We have measured resonance Raman spectra in the cytoplasm of living normal, myeloperoxidase (MPO)-deficient, and cytochrome b558-deficient neutrophils and in isolated specific and azurophilic granule fractions, using an excitation wavelength of 413.1 nm. Similar experiments were performed after reduction of the redox centers by the addition of sodium dithionite. The specific and azurophilic granules in both redox states appeared to have clearly distinguishable Raman spectra when exciting at a wavelength of 413.1 nm. The azurophilic granules and the cytochrome b558-deficient neutrophils showed Raman spectra similar to that of the isolated MPO. The spectra of the specific granules and the MPO-deficient neutrophils corresponded very well to published cytochrome b558 spectra. The resonance Raman spectrum of the cytoplasmic region of normal neutrophilic granulocytes could be fitted with a combination of the spectra of the specific and azurophilic granules, which shows that the Raman signal of neutrophilic granulocytes mainly originates from MPO and cytochrome b558, at an excitation wavelength of 413.1 nm.  相似文献   

8.
Resonance Raman spectra of reduced CO-bound cytochrome oxidase obtained at two different excitation frequencies (441.6 and 413.1 nm) are compared with the spectra of the fully reduced enzyme. In the spectra of the CO-bound complex only the cytochrome a modes are strongly enhanced with 441.6 nm excitation and only the modes of the CO-bound cytochrome a3 heme are strongly enhanced with 413.1-nm excitation. In the fully reduced complex with both excitation frequencies, modes of both cytochrome a and a3 are enhanced. By subtraction we are able to uncover the complete spectrum of the fully reduced ligand-free cytochrome a3 heme. Thus, we report the discrete resonance Raman spectra of cytochromes a2+, a2+3, and a2+3 (CO). The spectra of fully reduced cytochrome a and ligand-free cytochrome a3 are very different especially in the low frequency region. Binding CO to ferrous cytochrome a3 results in electronic structure changes in the heme analogous to those in hemoglobin and myoglobin, from which we conclude that there is nothing electronically unique in the ferrous cytochrome a3 heme to account for its catalytic properties.  相似文献   

9.
Coherent anti-Stokes Raman scattering spectra, in resonance with the isoalloxazine visible electronic transition, have been obtained down to 300 cm?1 for flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase, in H2O and D2O. Several isoalloxazine vibrational modes can be identified by analogy with those of uracil. Of particular interest is a band at ~1255 cm?1 in H2O, which is replaced by another at ~1295 cm?1, in D2O. The H2O band appears to be a sensitive monitor of H-bonding of the N3 isoalloxazine proton to a protein acceptor group. It shifts down by 10 cm?1 in riboflavin binding protein, and disappears altogether in glucose oxidase. Other band shifts, of 3–5 cm?1, are similar for the two flavoproteins, and may reflect environmental changes between aqueous solution and the protein binding pockets.  相似文献   

10.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

11.
The resonance Raman spectra of a DNA containing bromodeoxy-uridine (BrdUrd), the poly d(BrU-A), are reported, using U.V. laser as a source of excitation. The conformational change from the ordered, base paired form of poly d(BrU-A) (at 25°C) to the melted form at high temperature (63°C) is reflected in a pronounced hyperchromism of Raman bands at 1627 cm?1, 1352 cm?1 and 1230 cm?1. Particularly the band at 1627 cm?1 assigned to the vibrations of C4 carbonyl which is hydrogen bonded to adenine increases strongly its intensity upon melting. This represents a new approach for a detection of base unpairing and of modifications in geometry of selective molecules (BrdUrd) in a DNA chain in dilute solutions (10?4 M).  相似文献   

12.
Reaction centers have been purified from chromatophores of Rhodopseudomonas viridis by treatment with lauryl dimethyl amine oxide followed by hydroxyapatite chromatography and precipitation with ammonium sulfate. The absorption spectrum at low temperature shows bands at 531 and 543 nm, assigned to two molecules of bacteriopheophytin b. The 600 nm band of bacteriochlorophyll b is resolved at low temperature into components at 601 and 606.5 nm. At room temperature the light-induced difference spectrum shows a negative band centered at 615 nm, where the absorption spectrum shows only a weak shoulder adjacent to the 600 nm band. The fluorescence spectrum shows a band at 1000 nm and no fluorescence corresponding to the 830 nm absorption band. Two molecules of cytochrome 558 and three of cytochrome 552 accompany each reaction center. The differential extinction coefficient (reduced minus oxidized) of cytochrome 558 at 558 nm was estimated as 20 ± 2 mM?1 · cm?1 through a coupled reaction with equine cytochrome c. The extinction coefficient of reaction centers at 960 nm was determined to be 123 ± 25 mM?1 · cm?1 by measuring the light-induced bleaching of P-960 and the coupled oxidation of cytochrome 558. The corresponding extinction coefficient at 830 nm is 300 ± 65 mM?1 · cm?1. The absorbance ratio a280nma830nm in our preparations was 2.1, and there was 190 kg protein per mol of reaction centers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed three major components of apparent molecular weights 31 000, 37 000 and 41 000.  相似文献   

13.
Thomas C. Strekas 《BBA》1984,765(2):133-137
Resonance Raman spectroscopy has been used to obtain complete spectra of each individual cytochrome type — a, b and c — in the reduced state within membrane vesicle preparations from two species of obligately alkalophilic bacteria: Bacillus alcalophilus and Bacillus firmus RAB. The vibrational spectra, in the range 250–1700 cm?1, were obtained with tunable dye laser excitation in the wavelength range 550–600 nm tuned to resonance with the appropriate reduced alpha band maximum for the cytochrome type of interest. The spectra reveal details which serve to characterize the specific type of cytochrome as well as to confirm the similarity of the heme prosthetic group to previously well-characterized cytochromes of the the a- b- or c-type. Preliminary evidence in support of heterogeneity of b-type, and possibly a-type cytochromes, or of heme-heme interaction within the membrane is presented.  相似文献   

14.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli, has been studied by resonance Raman spectroscopy in its air-oxidized, dithionite-reduced, and reduced and CO-ligated states. In the reduced state, with a 406.7-nm excitation, there appeared 1494 and 1473 cm-1 lines, indicating that low spin and high spin components are included in the cytochrome b562-o complex. For the air-oxidized protein, resonance Raman lines were observed at 1372, 1503, and 1580 cm-1 with a 413.1-nm excitation, indicating that there is a ferric low spin heme. In addition, a weak but appreciable Raman line was observed at 1480 cm-1 assignable to a ferric high spin heme. Accordingly, it was concluded that low spin and high spin components are included in the cytochrome b562-o complex in the reduced and the air-oxidized states. In the CO-ligated state, with a defocused laser beam of 413.1 nm, two Raman bands assignable to the Fe-CO stretching mode have been observed at 489 and 523 cm-1, as a major and a minor component, respectively. When the laser beam was focused upon the sample to cause a photodissociation of CO from the heme moiety, the intensity of the major band at 489 cm-1 was reduced as expected. On the other hand, the minor band at 523 cm-1 remained still obvious. It was suggested that the cytochrome b562-o complex may have an additional anomalous site for CO that is resistant to photodissociation.  相似文献   

15.
In the resting oxidized state (the fully oxidized “as-isolated” state) of cytochrome c oxidase (CcO) preparation, a resonance Raman band is observed at 755 cm-1 upon 647.1 nm excitation in resonance with an absorption band at 655 nm. Addition of cyanide eliminates the Raman band concomitant with loss of the absorption band at 655 nm. These results strongly suggest that the Raman band at 755 cm-1 originates from the O−O stretching mode of the bridging peroxide (Fe−O-−O-−Cu) in the O2 reduction site of the fully oxidized “as-isolated” CcO. Although the peroxide bridged structure has been proposed on the basis of X-ray crystallography and reductive titration experiments, the present vibrational spectroscopic analyses reveal conclusively the chemical nature of the bridging ligand at the O2 reduction site of the fully oxidized “as-isolated” bovine heart CcO.  相似文献   

16.
Laser-Raman spectra of L-α-dimyristoylphosphatidylcholine (DMPC) liposomes in the spectral range 1000–1200 cm?1 were obtained as a function of temperature from ?80 to +50°C. The triplet found in this spectral region was resolved into Lorentzian components by means of an iterative computer program. The peak intensities, band widths, and band areas of the resolved 1062 cm?1 and 1130 cm?1 bands, assigned to CC stretching vibrations of trans segments, were evaluated as a function of temperature. While the peak intensities of the bands decrease substantially with temperature, the band widths show a considerable increase. The change in band areas is therefore smaller than the change in peak heights. Experiments with all trans carboxylic acids showed that in these compounds the area of the Raman bands at 1062 cm?1 and 1130 cm?1 is proportional to the number of trans bonds. The variation with temperature of the number of trans and gauche bonds in the studied phospholipid is reflected by the change of the area of the 1130 cm?1 Raman band.  相似文献   

17.
Bo Cartling  Robert Wilbrandt 《BBA》1981,637(1):61-68
The first investigation of the dynamics of a redox transition of an electron-transfer enzyme by time-resolved resonance Raman spectroscopy in combination with pulse-radiolytical reduction is described by an application to cytochrome c. A long-lived transient state is observed upon reduction of the alkaline form of cytochrome c as a distinct frequency shift of one resonance Raman band. From the frequency in the stable oxidized state, 1567 cm?1, this particular resonance Raman band shifts within less than 1 μs to 1533 cm?1 in the transient reduced state, which has a lifetime longer than 20 ms but shorter than a few seconds. Finally, in the stable reduced state, this band is located at 1547 cm?1. According to a previous normal coordinate analysis, this resonance Raman band can be assigned predominantly to a stretching mode of the outermost C-C bonds in the four pyrrole rings of porphyrin. This vibrational mode is influenced by the protein most directly through the covalent thioether linkages of two cysteines to porphyrin. We interpret the long lifetime of the transient state as due to the slow return of Met-80 as sixth ligand to the heme iron upon reduction of the alkaline form of cytochrome c.  相似文献   

18.
F Adar  M Erecińska 《Biochemistry》1979,18(9):1825-1829
A photoreductive titration of the resonance Raman (RR) spectra of cytochrome c oxidase in whole mitochondria was recorded by exploiting the preferential enhancement of the Raman signals of reduced cytochrome oxidase excited at 441.6 nm. When the sample was cooled to about--10 degrees C, it was possible to slow down the photoreductive effect of the laser and to record RR spectra at various states of reduction. Compared to the earliest recorded scan (most oxidized), the dithionite-reduced sample shows the appearance of new bands at 216, 363, 560, and 1665 cm-1. At intermediate stages of photoreduction, the 216- and 560-cm-1 bands appear before the 363- and 1665-cm-1 bands; photoreduction induces full intensity in the former bands, whereas the latter bands are photoreduced to 50% of the dithionite-reduced intensity. The relative intensities of a doublet at 1609--1623 cm-1 are affected by reduction: the band at 1609 cm-1 is weaker in the earlier scans; in later scans this band has grown to equal intensity with the 1623-cm-1 band. We conclude that this reductive titration of the RR spectrum of cytochrome c oxidase reflects three states in its reduction. The behavior of the doublet at 1609--1623 cm-1 suggests that the two hemes are nonequivalent but interacting. The band at 216 cm-1 may be indicative of an iron-copper interaction that is affected by the presence of external ligands.  相似文献   

19.
Oxygen binding to hemocyanin: a resonance Raman spectroscopic study   总被引:2,自引:0,他引:2  
Oxygenation of hemocyanin gives rise to resonance Raman peaks at 742 and 282 cm?1. The 742 cm?1 peak which is in resonance with the 575 nm charge transfer band shifts to 704 cm?1 when 18O2 is substituted for 16O2. Our results establish that the bound oxygen is in the form of peroxide (O22?). The 282 cm?1 peak which is in resonance with the 340 nm optical transition is insensitive to isotopic substitution, suggesting that the 282 cm?1 peak corresponds to a vibration involving the magnetically-coupled Cu(II)··Cu(II) centers.  相似文献   

20.
Resonance Raman studies of oxidized and reduced cytochrome oxidase and liganded derivatives of the oxidized enzyme have been performed by using direct-Soret excitation at 413.1 and 406.7 nm, as well as near-Soret excitation (457.9 nm) and alpha-band excitation (604.6 nm). The Soret results clearly show selective enhancement of Raman modes of the hemes of cytochromes a and a3, depending upon the excitation wavelength chosen. For the preparations employed in this study, photoreduction of cytochrome oxidase in the laser beam was not a significant problem. Resonance Raman frequencies sensitive to oxidation state and spin state or core expansion of the a and a3 hemes are identified and correlated with those previously identified for other heme proteins. An unusual low-frequency (less than 500 cm(-1)) spectrum is observed for oxidized high-spin cytochrome a3, which may be due to axial nonheme structures in this cytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号