首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
The insertion of newly synthesized proteins into the outer membrane of Escherichia coli has been examined. The results show that there is no precursor pool of outer membrane proteins in the cytoplasmic membrane because first, the incorporation of a [35S]methionine pulse into outer membrane proteins completely parallels its incorporation into cytoplasmic membrane proteins, and second, under optimal isolation conditions, no outer membrane proteins are found in the cytoplasmic membrane, even when the membranes are analysed after being labeled for only 15 s.The [35S]methionine present in the outer membrane after a pulse of 15 s was found in protein fragments of varying sizes rather than in specific outer membrane proteins. This label could however be chased into specific proteins within 30–120 s, depending on the size of the protein, indicating that although unfinished protein fragments were present in the outer membrane, they were completed by subsequent chain elongation.Thus, outer membrane proteins are inserted into the outer membrane while still attached to ribosomes. Since ribosomes which are linked to the cell envelope by nascent polypeptide chains are stationary, the mRNA which is being translated by these ribosomes moves along the inner cell surface.  相似文献   

2.
A complex containing lipopolysaccharides, phospholipids and proteins is released into the culture medium by Escherichia coli during normal growth. It can be separated from the medium by gelfiltration on Sephadex G-200 or by centrifugation. Electron microscopy revealed that this material is released as vesicles and membrane fragments. To determine the origin of these fragments, they were compared to outer and cytoplasmic membranes with respect to keto-deoxyoctulosonic acid, phospholipid, and protein content, phospholipid composition, fatty acid composition, protein distribution on sodium dodecyl sulfate-polyacrylamide gels, buoyant density, and content of several membrane marker enzymes. The results of this comparison indicate that the membrane fragments found in the culture supernatant of normally growing Escherichia coli consist of practically unmodified outer membrane. Possible mechanisms as to the cause of the release of outer membrane fragments, and its relationship to cell-division, are discussed.  相似文献   

3.
Outer membrane proteins are synthesized by cytoplasmic membrane-bound polysomes, and inserted at insertion sites which cover about 10% of the total outer membrane when cells grow with a generation time of 1 h. A membrane fraction enriched in outer membrane insertion regions was isolated and partly characterized. The rate at which newly inserted proteins are transferred from such insertion regions into the rest of the outer membrane was found to be very fast; the new protein content of insertion regions and that of the remaining outer membrane equilibrate completely within about 20 s at 25°C.Given the rather rigid structure of the outer membrane and the multiple interactions between outer membane components and the murein layer, lateral diffusion of newly inserted proteins from insertion sites to the remaining outer membrane is not likely to explain this rapid equilibration. Instead, the data support a model in which mobile insertion regions move along the cell surface, leaving behind stationary, newly inserted outer membrane proteins.  相似文献   

4.
Outer membrane proteins are synthesized by cytoplasmic membrane-bound polysomes, and inserted at insertion sites which cover about 10% of the total outer membrane when cells grow with a generation time of 1 h. A membrane fraction enriched in outer membrane insertion regions was isolated and partly characterized. The rat at which newly inserted proteins are transferred from such insertion regions into the rest of the outer membrane was found to be very fast; the new protein content of insertion regions and that of the remaining outer membrane equilibrate completely within about 20 s at 25 degrees C. Given the rather rigid structure of the outer membrane and the multiple interactions between outer membrane components and the murein layer, lateral diffusion of newly inserted proteins from insertion sites to the remaining outer membrane is not likely to explain this rapid equilibration. Instead, the data support a model in which insertion regions move along the cell surface, leaving behind stationary, newly inserted outer membrane proteins.  相似文献   

5.
The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP) in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.  相似文献   

6.
Selective and step-wise inhibition of bioysnthesis and assembly of three major outer membrane proteins of Escherichia coli (matrix protein, tolG protein (DiRienzo et al., 1978), and lipoprotein) was achieved in the presence of phenethyl alcohol. At a lower concentration (0·3% or higher) PEA4 specifically inhibited the processing and assembly of matrix protein, resulting in the accumulation of promatrix protein. The promatrix protein thus synthesized in the presence of PEA was chased into matrix protein and properly assembled into the outer membrane upon the removal of PEA, demonstrating a direct precursor-product relationship between the two proteins. Promatrix protein was sensitive to trypsin and was also solubilized from the membrane fraction by sodium sarcosinate. However, promatrix protein was also found to be loosely associated with the outer membrane fraction. These data indicate that promatrix protein was translocated across the cytoplasmic membrane and localized external to the cytoplasmic membrane, although it was not yet properly inserted into the outer membrane structure.The inhibition of processing of protolG (DiRienzo et al., 1978) protein was observed at higher levels of PEA (0·4% or higher). However, at all concentrations of PEA tested, the accumulation of prolipoprotein was not detected. On the other hand, when PEA was added at concentrations lower than the above critical concentrations for each protein, the precursor was properly processed but the processed proteins (tolG protein, and lipoprotein) were accumulated in the periplasmic space, since they were released by osmotic shock. tolG protein of the soluble cell fraction was chased into the outer membrane after removal of PEA and regrowth of the cells in culture. The processed lipoprotein of the soluble fraction was trypsin-sensitive in contrast to mature lipoprotein. These results indicate that the precursor protein with the peptide extension is transformed into a new assembly intermediate after the extended peptide is cleaved off. This intermediate may be released into the periplasmic space in the presence of PEA before it can be assembled into the outer membrane. These data indicate that the peptide extension is not essential for the insertion of the outer membrane protein into the outer membrane.When PEA (0·3%) was added to a growing culture, the production of not only matrix protein but also promatrix protein was completely inhibited. However, synthesis of promatrix protein was restored when rifampicin was added before the PEA treatment. These results are discussed in terms of control of gene expression for matrix protein. PEA was found to increase the membrane fluidity.  相似文献   

7.
M13 procoat protein was one of the first model proteins used to study bacterial membrane protein insertion. It contains a signal peptide of 23 amino acid residues and is not membrane targeted by the signal recognition particle. The translocation of its periplasmic domain is independent of the preprotein translocase (SecAYEG) but requires electrochemical membrane potential and the membrane insertase YidC of Escherichia coli. We show here that YidC is sufficient for efficient membrane insertion of the purified M13 procoat protein into energized YidC proteoliposomes. When no membrane potential is applied, the insertion is substantially reduced. Only in the presence of YidC, membrane insertion occurs if bilayer integrity is preserved and membrane potential is stable for more than 20 min. A mutant of the M13 procoat protein, H5EE, with two additional negatively charged residues in the periplasmic domain inserted into YidC proteoliposomes and SecYEG proteoliposomes with equal efficiencies. We conclude that the protein can use both the YidC-only pathway and the Sec pathway. This poses the questions of how procoat H5EE is inserted in vivo and how insertion pathways are selected in the cell.  相似文献   

8.
The effect of toluene on Escherichia coli has been examined. In the presence of Mg2+, toluene removes very little protein, phospholipid, or lipopolysaccharide from E. coli. In the absence of Mg2+, or in the presence of EDTA, toluene removes considerably more cell material, including several specific cytoplasmic proteins such as malate dehydrogenase (EC 1.1.1.37). In contrast, glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and glutamate dehydrogenase (EC 1.4.1.4) are not released at all under the same conditions.Cells treated with toluene in the presence of Mg2+ remain relatively impermeable to pyridine nucleotides, while cells treated with toluene in the presence of EDTA become permeable to these compounds. Freeze-fracture electron microscopy shows that toluene causes considerable damage to the cytoplasmic membrane, while the outer membrane remains relatively intact. These results indicate that the permeability characteristics of toluene-treated cells depend at least partly on the state of the outer membrane after the toluene treatment.  相似文献   

9.
Effects of protease inhibitors on composition of newly synthesized protein were studied by pulse-labeling E. coli cells with [3H]leucine and analyzing the labeled proteins by sodium dodecylsulfate gel electrophoresis. In addition to tosyl-lysine chloromethylketone that had been studied previously, antipain, leupeptin and diisopropyl fluorophosphate all inhibited production of a major outer membrane protein, protein I. Synthesis of protein I was specifically inhibited by antipain or leupeptin in strain K12, whereas several other proteins were also affected in strain B. Protein synthesis in strain B was generally more sensitive to inhibition by antipain than that in strain K12.  相似文献   

10.
Yeast (CUP1) and mammalian (HMT-1A) metallothioneins (MTs) have been efficiently expressed in Escherichia coli as fusions to the outer membrane protein LamB. A 65-amino-acid sequence from the CUP1 protein of Saccharomyces cerevisiae (yeast [Y] MT) was genetically inserted in permissive site 153 of the LamB sequence, which faces the outer medium. A second LamB fusion at position 153 was created with 66 amino acids recruited from the form of human (H) MT that is predominant in the adipose tissue, HMT-1A. Both LamB153-YMT and LamB153-HMT hybrids were produced in vivo as full-length proteins, without any indication of instability or proteolytic degradation. Each of the two fusion proteins was functional as the port of entry of lambda phage variants, suggesting maintenance of the overall topology of the wild-type LamB. Expression of the hybrid proteins in vivo multiplied the natural ability of E. coli cells to bind Cd2+ 15- to 20-fold, in good correlation with the number of metal-binding centers contributed by the MT moiety of the fusions.  相似文献   

11.
Summary One, two or four IgG-binding domains of the Staphylococcus aureus Protein A (SPA) were inserted into the LamB protein which was expressed under control of the tac promoter. The chimeric proteins were shown to be exposed at the cell surface by analysis of isolated outer membranes and also by testing their functional interaction with IgG molecules. We hereby show that the LamB protein can accept as many as 232 amino acids (four SPA domains) and still be incorporated into the Escherichia coli outer membrane, while maintaining the functional conformation of the inserted SPA polypeptides.  相似文献   

12.
AmiD is the fifth identified N-acetylmuramoyl-l-alanine zinc amidase of Escherichia coli. This periplasmic lipoprotein is anchored in the outer membrane and has a broad specificity. AmiD is capable of cleaving the intact peptidoglycan (PG) as well as soluble fragments containing N-acetylmuramic acid regardless of the presence of an anhydro form or not, unlike the four other amidases, AmiA, AmiB, AmiC, and AmpD, which have some specificity. AmiD function is, however, not clearly established but it could be part of the enzymatic machinery involved in the PG turnover in E. coli. We solved three structures of the E. coli zinc amidase AmiD devoid of its lipidic anchorage: the holoenzyme, the apoenzyme in complex with the substrate anhydro-N-acetylmuramic-acid-l-Ala-γ-d-Glu-l-Lys, and the holoenzyme in complex with the l-Ala-γ-d-Glu-l-Lys peptide, the product of the hydrolysis of this substrate by AmiD. The AmiD structure shows a relatively flexible N-terminal extension that allows an easy reach of the PG by the enzyme inserted into the outer membrane. The C-terminal domain provides a potential extended geometrical complementarity to the substrate. AmiD shares a common fold with AmpD, the bacteriophage T7 lysozyme, and the PG recognition proteins, which are receptor proteins involved in the innate immune responses of a wide range of organisms. Analysis of the different structures reveals the similarity between the catalytic mechanism of zinc amidases of the AmiD family and the thermolysin-related zinc peptidases.  相似文献   

13.
Protein perdeuteration approaches have tremendous value in protein NMR studies, but are limited by the high cost of perdeuterated media. Here, we demonstrate that E. coli cultures expressing proteins using either the condensed single protein production method (cSPP), or conventional pET expression plasmids, can be condensed prior to protein expression, thereby providing high-quality 2H, 13C, 15N-enriched protein samples at 2.5–10% the cost of traditional methods. As an example of the value of such inexpensively-produced perdeuterated proteins, we produced 2H, 13C, 15N-enriched E. coli cold shock protein A (CspA) and EnvZb in 40× condensed phase media, and obtained NMR spectra suitable for 3D structure determination. The cSPP system was also used to produce 2H, 13C, 15N-enriched E. coli plasma membrane protein YaiZ and outer membrane protein X (OmpX) in condensed phase. NMR spectra can be obtained for these membrane proteins produced in the cSPP system following simple detergent extraction, without extensive purification or reconstitution. This allows a membrane protein’s structural and functional properties to be characterized prior to reconstitution, or as a probe of the effects of subsequent purification steps on the structural integrity of membrane proteins. We also provide a standardized protocol for production of perdeuterated proteins using the cSPP system. The 10–40 fold reduction in costs of fermentation media provided by using a condensed culture system opens the door to many new applications for perdeuterated proteins in spectroscopic and crystallographic studies.  相似文献   

14.
We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprCN and TprCC) orthologous to regions in the major outer sheath protein (MOSPN and MOSPC) of Treponema denticola and that TprCC is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSPC-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSPN-like domains are tethered within the periplasm. TprF, which does not contain a MOSPC-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSPN and MOSPC-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSPN-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.  相似文献   

15.
《Gene》1997,186(2):167-173
A 12-kb PstI fragment including the entire E. coli lactose operon (lacIPOZYA) was inserted in one copy into the chromosome of Pseudomonas putida, Pseudomonas fluorescens and an E. coli strain with lac phenotype. This was made possible by improvements of an already existing mini-Tn5 transposon delivery system (de Lorenzo et al., 1990; Herrero et al., 1990), which integrates cloned DNA fragments at random sites on the chromosome of the recipient bacteria in single copies. This has resulted in: (a) the making of two useful low copy-number cloning vectors both with extensive multi-cloning regions flanked by NotI sites needed in the mini-Tn5 delivery system; (b) the generation of E. coli nonlysogenic strains expressing the π protein thus being capable of maintaining and delivering R6K-based mini-Tn5 vectors to other E. coli strains; (c) the successful insertion of the E. coli lactose operon into the P. fluorescens chromosome giving P. fluorescens the ability to grow on lactose; (d) evidence from Southern blotting that contradicts the assumption that the mini-Tn5 delivery system always creates one-copy inserts. These improvements allow insertion of large DNA fragments encoding highly expressed proteins into the chromosome of a large variety of Gram-negative bacteria including E. coli.  相似文献   

16.
The complete nucleotide sequences of the fomA genes encoding the 40-kDa outer membrane proteins (OMPs) of strains ATCC 10953 and ATCC 25586 of Fusobacterium nucleatum were determined using the genomic DNA, or DNA fragments ligated into a vector plasmid, as template in a polymerase chain reaction. The deduced amino acid sequences of these two proteins were aligned with the amino acid sequence of the corresponding protein of F. nucleatum strain Fev1 and examined for conserved/variable polypeptide segments. A model for the topology of the 40-kDa OMPs is proposed on the basis of this alignment and application of the structural principles derived for OMPs of Escherichia coli. According to this model, sixteen polypeptide segments, which are highly conserved, traverse the outer membrane, thereby creating eight external loops, most of which are highly variable.  相似文献   

17.
A class of Escherichia coli mutants called tolG are specifically tolerant to bacteriocin JF246. Cell envelopes were prepared from three independent spontaneous E. coli. tolG mutants and the parental strain (tolG+). Electrophoresis of these preparations in polyacrylamide gels containing sodium dodecyl sulfate showed that the tolG strains lacked a cell envelope protein found in the tolG+ strain. It was estimated that this protein accounted for 10% of the total cell envelope proteins by densitometer tracings of gels stained with Fast Green. Membrane fractionation by isopycnic centrifugation in a sucrose density gradient showed that this protein was located in the outer membrane of tolG+ cells. Genetic studies using conjugation, transduction and reversion showed that, in the limited number of recombinants or revertants studied, strains exhibiting the tolerant phenotype lacked the outer membrane protein, whereas the protein was present in bacteriocin-sensitive strains.  相似文献   

18.
TolC and its homologous family of proteins are outer membrane factors that are essential for exporting small molecules and toxins across the outer membrane in Gram-negative bacteria. Two open reading frames in the Vibrio vulnificus genome that encode proteins homologous to Escherichia coli TolC, designated TolCV1 and TolCV2, have 51.3% and 29.6% amino acid identity to TolC, respectively. In this study, we show that TolCV1 and TolCV2 functionally and physically interacted with the membrane fusion protein, MacA, a component of the macrolide-specific MacAB-TolC pump of E. coli. We further show that the conserved residues located at the aperture tip region of the α-hairpin of TolCV1 and TolCV2 played an essential role in the formation of the functional MacAB-TolC pump using site-directed mutational analyses. Our findings suggest that these outer membrane factors have conserved tip-to-tip interaction with the MacA membrane fusion protein for action of the drug efflux pump in Gramnegative bacteria.  相似文献   

19.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

20.
We truncated the VP2 protein of infectious bursal disease virus into five fragments: V1–5. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the VP2 fragment were incubated with an anti-VP2 polyclonal antibody (pAb). Prey pairs were detected and quantitated by flow cytometry with V1, V3, V4 and V5 fragments reacting with the pAb. The antigenicity of all five fragments was analyzed, and our results indicated that epitopes were localized in V1, V3, V4 and V5, consistent with our flow cytometry analysis. Antigenicity analysis of purified VP2 fusion proteins using Western blots confirmed this. Our method provides a rapid, quantitative and simple strategy for identifying linear B cell epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号