首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid phase transition of Escherichia coli was studied by high sensitivity differential scanning calorimetry. A temperature sensitive unsaturated fatty acid auxotroph was used to obtain lipids with subnormal unsaturated fatty acid contents. From these studies it was concluded that E. coli can grow nromally with as much as 20% of its membrane lipids in the ordered state but that if more than 55% of the lipids are ordered, growth ceases. Studies with wild-type cells show that the phase transition ends more than 10 degrees C below the growth temperature when the growth temperature is either 25 degrees C or 37 degrees C.  相似文献   

2.
The thermotropic behaviour of fatty acid-homogeneous membranes of Acholeplasma laidlawii B was investigated by Fourier transform infrared spectroscopy. The organism was grown at 37°C in the presence of avidin, an inhibitor of fatty acid synthesis, in a medium supplemented with pentadecanoic acid-d29; the enrichment of the membranes with this fatty acid was 95%. The temperature-dependent phase behaviour of the membranes was studied via the C–D stretching vibrational modes of the membrane lipids and was compared with that of the lipid extract. The high level of fatty acid homogeneity results in a sharp (for natural membranes) gel to liquid crystalline phase transition. The transition, in both the membranes and extracted lipids, is centered at about 6°C above the growth temperature. During the transition two principal liquid states are evident, one being more conformationally ordered than the other. The effect of proteins on the principal lipid phase transition is minimal. However, in the intact membranes there is evident a weaker, lower temperature transition, which is not evident in the extracted lipids.  相似文献   

3.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

4.
Total phospholipids were extracted from cells of temperature sensitive unsaturated fatty acid auxotrophs of Escherichia coli (K-12 UFAts) grown at 28°C (PL28), and at 42°C in the presence of 2% KCl as an osmotic stabilizer (PL42 (KCl)). From the analysis of fatty acids, it was shown that the content of unsaturated fatty acids of PL42 (KCl) is only 9% of the total fatty acids, while that of PL28 is 54%. The thermal phase transitions of the bilayers prepared from the phospholipid fractions were studied by proton magnetic resonance. The line widths of the methylene signals and the sums of the methylene and methyl signal intensities were plotted against reciprocal values of absolute temperature 1/T or temperature itself. From the plots phase transitions were detected at about 19°C for PL28 and at 43°C for PL42 (KCl). In spite of its complex composition of fatty acids a highly cooperative transition was observed in the case of PL42 (KCl). It was also suggested that the phospholipids bilayers in the biomembranes of this strain at the growth temperature (42°C) are in the state where the gel and liquid crystalline phases coexist.  相似文献   

5.
The phase behavior of aqueous dispersions of extracted lipids from Clostridium thermocellum wild-type and ethanol-tolerant C919 cells has been examined by DSC. The optimum growth temperature of this anaerobe is 60°C. The wild-type lipids exhibit a broad phase transition centered at 30°C; the C919 mutant lipids show a 10°C lower Tm. The direct addition of growth inhibiting concentrations of ethanol has no significant effect on Tm or headgroup mobility (monitored by 2H-NMR) of either set of lipids. In contrast, wild-type cells adapted to growth in ethanol exhibit a broadened and lower Tm (15–25°C plateau); C919 membrane lipids do not exhibit significantly altered phase behavior when adapted to growth in ethanol. Both wild-type and mutant membranes have fatty acid composition changes upon growth in ethanol, which increases lower-melting components. It is concluded that fatty acid changes which occur upon adaptation of the organism to growth in ethanol are secondary responses and not necessarily direct responses to alter membrane fluidity.  相似文献   

6.
The phospholipid and fatty acid composition and thermotropic behavior of total lipids were studied in the metal-accumulating marine strain Pseudomonas putida IB28 grown in the presence of Cu2+ and Cd2+ at 4 and 24°C. Despite the changes in acidic lipid content, unsaturated/saturated fatty acid ratio, and cyclopropane fatty acid level, the temperature range of calorimetric phase transitions of bacterial total lipids was slightly altered under these factors. The suppressive action of heavy metals on bacterial growth is attributable to the phase separation of lipids and, as a consequence, to a sharp increase in the ion permeability of the lipid bilayer. The increase in acidic phospholipid level under the influence of Cu2+ and Cd2+, especially at 24°C, is likely to be indicative of their complexation with heavy metal ions.  相似文献   

7.
Cyanobacteria desaturate fatty acids in the membrane lipids in response to decrease in temperature. We examined the changes in lipid and fatty acid composition in the thermophilic cyanobacterium Synechococcus vulcanus, which is characterized by an optimum growth temperature of 55°C. During temperature acclimation to 45°C or 35°C, the cells synthesized oleic acid at the expense of stearic acid in the membrane lipids. Unlike mesophilic cyanobacteria, S. vulcanus did not show any significant adaptive desaturation in the galactolipids monogalactosyl diacylglycerol and digalactosyl diacylglycerol, that comprise 50% and 30% of total membrane lipids, respectively. The major changes in fatty acid unsaturation were observed in the sulfolipid sulfoquinovosyl diacylglycerol.  相似文献   

8.
Membrane core structures as revealed by the freeze-etch electron microscopy and the fatty acid composition measured by gas-liquid chromatography have been analyzed in Tetrahymena cells exposed to low temperature for varying periods.When cells were grown to mid-log phase at the optimal growth temperature of 28 °C and then chilled to 10 °C, cell division was inhibited. However, within 16 h the cells adapted to the low temperature.Chilling effected drastic structural alterations in the cores of different membrane types (membranes of the pellicula, the alveolar sacs, the endoplasmic reticulum and the nuclei). In all cases, there was a segregation of smooth faces from particle-rich faces in the fracture planes. However, the native membrane state, i.e. like that of cells grown at 28 °C, reappeared when the cells adapted to the low temperature.The total lipids of Tetrahymena cells contained primarily even-numbered fatty acids ranging from C12 to C18, but we also detected appreciable amounts of C20 acids; this has not been reported before. During the initial phase of chilling, when cell division is inhibited, about 50% of the saturated fatty acids were replaced by unsaturated fatty acids, primarily monoenoic, dienoic and trienoic acids.We conclude that the structural recovery of the membranes in chilled Tetrahymena cells is accomplished by a desaturation of membrane fatty acids. This is discussed with respect to membrane “fluidity”.  相似文献   

9.
When chlortetracycline is added to a suspension of respiring Staphylococcus aureus cells, the active transport of the antibiotic may be monitored by its fluorescence enhancement as it moves from a polar aqueous environment into the apolar regions of the membrane. The initial rates of transport are temperature dependent with a maximal rate between 35 and 45 °C. Arrhenius plots of the initial rates are biphasic with a transition temperature of 27 °C for control cells. This transition temperature is sensitive to the fatty acid composition of the S. aureus cells. By culturing the cells in the presence of oleic acid or at 10 °C, the S. aureus cells incorporate a larger percentage of unsaturated and branched chain fatty acids into their membranes, resulting in transition temperatures 8–9 °C lower than the control cells. Studies of depolarization of fluorescence also indicate that the mobility of the bound chlortetracycline is temperature-dependent. Temperature transitions occur at the same temperatures as those measured by Arrhenius plots. The transition temperatures indicated by the Arrhenius plots and the polarization studies are believed to reflect order-disorder phase transitions associated with the melting of the phospholipids in the cell envelope.  相似文献   

10.
Acholeplasma laidlawii B was grown on the branched-chain fatty acids, 14-methylpentadecanoic acid and 14-methylhexadecanoic acid, and the straight-chain palmitic acid. The incorporation of the branched-chain fatty acids was very effective; more than 90% of the fatty acids of the lipids of this organism consisted of the branched-chain constituents. A somewhat smaller amount (81%) was found in the cells grown with palmitic acid. Differential scanning calorimetry of the isolated membranes showed that distinct lipid phase transitions occurred in between 15 and 31 °C for the 14-methylpentadecanoic acid, 11 and 29 °C for the 14-methylhexadecanoic acid, and 14 and 36 °C for the palmitic acid-enriched membranes. Freeze-fracture electron microscopy showed that the lipid phase transitions were accompanied by particle aggregation only in the case of palmitic acid-enriched membranes. When the branched-chain acid-enriched membranes were quenched from temperatures below the onset of the lipid phase transition, a random distribution of particles on both fracture faces of the membrane was observed. The membranes were incubated with pig pancreatic phospholipase A2 at various temperatures. Below the onset of the lipid phase transition phosphatidylglycerol was not accessible for this enzyme in palmitate-enriched membranes. However, a fast hydrolysis of 60–75% of the phosphatidylglycerol could be measured in the branched-chain acid-enriched membranes at temperatures below the onset of the lipid phase transition. The residual phosphatidylglycerol could be hydrolyzed at a slower, temperature-dependent rate. The observations show that lipids containing branched-chain acids undergo a cooperative lipid phase transition which does not result in a tight packing of the lipids of the bilayer below the phase transition.  相似文献   

11.
On lowering the growth temperature of Escherichia coli K-12 from 37 to 17 °C, the cells resumed growth after a lag period of 40 min. During the lag period, the transition points in Arrhenius plots of the preinduced β-galactoside transport system were not changed while the saturated/unsaturated fatty acids ratio decreased gradually in phosphatidylethanolamine, rapidly in phosphatidylglycerol and little in cardiolipin.  相似文献   

12.
To help understand the tolerances of desert succulents to extremely high temperatures (above 60°C), the effect of growth temperature on fatty acid composition of various membrane fractions from three species was investigated. When maintained at day/night air temperatures of 30°C/20°C, their chlorenchyma fatty acid compositions were similar to one another and to those of mesophytic leaves, except that desert succulents had appreciably less linolenic acid (18:3) and more oleic acid (18:1) and hence greater fatty acid saturation. The differences were observed in the chloroplast, mitochondrial and microsomal fractions and were more apparent in the nonpolar lipids than the total lipids. For all membrane fractions of Ferocactus acanthodes, a shift to 50°C/40°C resulted in a decrease in 18:3 and an increase in 18:1 and hence an increase in fatty acid saturation level. For Agave deserti and Carnegiea gigantea, however, increasing the day/night air temperatures did not result in increased fatty acid saturation, although their high-temperature tolerances increase about as much as that of F. acanthodes as the air temperature is increased. Thus, acquisition of high-temperature tolerance need not be accompanied by marked changes in fatty acid saturation or composition.  相似文献   

13.
Erratum     
Escherichia coli cells (unsaturated fatty acid auxotroph) have been adapted to grow on branched-chain fatty acids. Membrane vesicles were isolated from cells grown on a mixture of branched-chain fatty acids isolated from the lipids of Bacillus subtilis (E. coli (B. subtilis) membranes) and on a pure synthetic anti-isononadecanoic acid (E. coli (aC19) membranes).We have shown, using wide-angle X-ray diffraction and differential scanning calorimetry, that the ordered state of the lipids is perturbed in the case of E. coli (aC19) membranes. The perturbation leads to the presence of a large wide-angle X-ray diffraction at 4.25–4.3 Å, as opposed to the presence of a sharp 4.2 Å reflection in unperturbed systems.We have shown, using freeze-fracture electron microscopy, that a protein segregation exists in the case of E. coli (aC19) membranes (at low temperature the integral membrane proteins aggregate in the membrane domains containing the disordered lipids); we do not observe such segregation in the case of E. coli (B. subtilis) membranes. We conclude that in cases where the branching of the fatty acids introduces a perturbation of the lipid order, the integral membrane proteins can still be accommodated in membrane domains containing the ‘perturbed’ ordered lipids.Finally, we have determined the rate of β-galactoside transport in E. coli (aC19) and E. coli (B. subtilis) membranes as a function of temperature. We have shown that, in both cases, the Arrhenius representations display an increased slope in the region of the disorder-to-order transition. We conclude that such an increased slope may have different origins. In the case of E. coli (aC19) membranes, it is the result of the aggregation of the β-galactoside carriers together with other integral membrane proteins which may lead to the inactivation of the carriers; in the case of E. coli (B. subtilis) membranes, it is the result of the partial immobilisation of the carriers embedded in a lipid environment, of which the fluidity, despite the perturbation of its lipid order, is still much less than that associated with lipids in a totally disordered state.  相似文献   

14.
Veillonella parvula ATCC 10790, an anaerobic gram-negative coccus, contains diacyl and alk-1-enyl acyl (plasmalogen) forms of phosphatidylethanolamine and phosphatidylserine. We studied the effect of growth temperature on the lipid composition of this strain. There was a small increase in the phosphatidylethanolamine content but no change in the content of plasmalogens at the lower growth temperatures tested. The total acyl chains and the plasmalogen acyl chains contained between 73 and 80% mono-unsaturated fatty acids at all growth temperatures. The plasmalogen alk-1-enyl chains were significantly more unsaturated in cells grown at 30 and 25°C than in cells grown at 37°C. Differential scanning calorimetry of the hydrated phospholipids showed lower phase transition temperatures for the lipids from the cells grown at the lower temperatures. In Megasphaera elsdenii lipids, which are similar in composition to the lipids of V. parvula, the proportion of phosphatidylethanolamine also increased slightly at lower growth temperatures, with no significant change in the content of plasmalogens. M. elsdenii contained cyclopropane fatty acyl and alk-1-enyl chains in addition to the mono-unsaturated and saturated chains previously reported. As cells entered the stationary phase of growth at 30 and 42.5°C, there was a reciprocal increase in the proportion of cyclopropane acyl chains and decrease in the unsaturated moieties. The total proportion of cyclopropane and unsaturated acyl and alk-1-enyl chains was more than 65% at all growth temperatures studied, and there was no discernible increase in the sum of these moieties at the lower growth temperatures.  相似文献   

15.
Differential scanning calorimetry (DSC) was used to examine the relationship of the gel to liquid-crystalline phase transition of lipids to fatty acid composition with membrane lipids and spheroplast membranes isolated from cells of a wild strain and an unsaturated fatty acid auxotroph of Escherichia coli grown under various conditions. These lipids and membranes underwent thermotropic phase transitions at different temperatures depending on the thermal properties of their constituent fatty acids. The lipid phase transition occurred at higher temperatures in biomembranes than in extracted lipids. DSC thermograms of lipids synthesized by bacterial cells which were observed at a temperature scanning rate as slow as 0.3 K min-1 were characterized by a distinctly plain peak summit. Endothermic peaks given by samples derived from elaidic acid-enriched cells were relatively narrow and asymmetric. The discrepancy between the transition temperatures measured with extracted lipids and with membraneous fractions, and the shape of the endothermic peaks, are discussed.  相似文献   

16.
Brief treatment of rat liver plasma membranes with phospholipase C of Clostridium welchii increased both the ratio of saturated to unsaturated fatty acids and the ratio of cholesterol to phospholipids. Using 5-doxylstearic acid spin probes two breaks at 29 and 19.6 °C could be observed in the order parameter, SA, vs temperature curve for untreated membranes. Upon phospholipase C digestion the lower phase transition temperature was shifted to 23 °C, while the higher phase transition temperature could not be detected up to 40 °C. The order parameter, SA, was consistently higher at all temperatures in the phospholipase C-treated membranes. As phospholipase C is known to attack the outer lamella, these results can be interpreted as indicating an increase in ordering (i.e., decrease in fluidity) of the outer membrane lamella. On the other hand, an increase in basal activity of adenylate cyclase of the treated membranes was observed with an apparent reduction of the activation energies both below and above the break (at 20 °C) in the Arrhenius plot of enzyme activity. Phospholipase C treatment did not affect the temperature of the break in Arrhenius kinetics of the enzyme. The results are discussed in terms of the role of the ordering state of membrane lipids in adenylate cyclase activity.  相似文献   

17.
The content of lysophosphatidylethanolamine (LPE) in Y. pseudotuberculosis cells was found to increase during their growth at 8 °C under stationary conditions (without stirring the medium) and at 37°C when the medium contained glucose. The maximum level of LPE (up to 45% of the total phospholipids) was observed in cells grown at 8°C under stationary conditions. Such cells showed decreas growth rate, a reduced yield of biomass, an altered cell morphology, and an increased cell area. The cells contained unsaturated fatty acids, phosphatidylethanolamine (PE), and total phospholipids in small amounts, whereas neutral lipids and diphosphatidylglycerol were abundant. In addition, the cells contained an amount of methylated PE and phospholipids of unknown structure. Irrespective of whether the temperature for growth was low or high, the LPE-rich cells showed a high value (32–36°C) of the maximum temperature of thermal transition of lipids (T max). This finding is indicative of a densification of the membrane lipid matrix of the LPE-rich cells. The suggestion is made that LPE is accumulated in bacterial cells in response to stress caused by oxygen deficiency and pH decrease in the course of glucose fermentatin. The possible relationship between LPE accumulation and the virulence of Y. pseudotuberculosis cells grown at low temperatures is discussed.  相似文献   

18.
The relationship between membrane lipid composition and membrane lipid phase transitions was investigated in Yersinia enterocolitica cells grown at 5, 22 and 37°C. The total phospholipid concentrations were 9.4, 7.3 and 6.3% of the cell dry weight for cells grown at 5, 22 and 37°C, respectively. The relative concentrations of the three major phospholipids, phosphatidylethanolamine (73–76%), phosphatidylglycerol (9–11%) and cardiolipin (11–13%) were essentially the same at all three growth temperatures. The ratios of unsaturated to saturated fatty acids were 2.2, 1.1 and 0.4 for cells grown at 5, 22 and 37°C, respectively. This change in the fatty acid composition in response to temperature changes is similar to the patterns reported for other organisms. Reversible thermotropic phase transitions were detected by calorimetric analysis in both pure lipid preparations and membrane preparations. The mid-points of the thermotropic phase transitions were at ?13, ?9 and 1°C for membranes from cells grown at 5, 22 and 37°C, respectively. The phase transitions of the membranes from cells grown at the three different temperatures occurred below the lowest growth temperature (5°C). The alternations in the fatty acid composition in Y. enterocolitica did not, therefore, appear to be required to adjust membrane fluidity but might rather be required for some other membrane function.  相似文献   

19.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43°C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20°C, but in a liquid crystalline state when cells were grown at 37 and 43°C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

20.
The lipid profile of Pleurotus sajor caju was studied in relation to mycelial and sporophore growth and different cultural factors. The growth was characterised by lipid synthesis during mycelial growth and utilisation during sporophore growth. The degree of instauration increased during mycelial growth and decreased during sporophore formation. The fatty acid composition of mycelium and sporophore was similar, linoleic acid (C18:2) being the most dominant acid in both. C:N ratio had a significant (P<0.05) positive effect on mycelial dry weight; however, per cent total lipids was similar. Non-polar lipids became more unsaturated as the temperature was raised from 10° to 25°C and pH from 3.0 to 6.0, but declined when the cultures were aerated. Mycelial dry weight increased significantly (P<0.05) when the liquid medium was supplemented with lipids. In general, fatty acids with carbon chain length C16 and C18 stimulated the growth of mycelium. Supplementation of solid substrate (cotton seed hulls) with safflower oil, soybean oil or rice bran significantly (P<0.05) increased the yield of sporophores. Total lipids and ratio of non-polar to polar lipids were not affected by lipid supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号