首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modification of tryptophan residues in abrin-a with N-bromosuccinimide (NBS) was studied with regard to saccharide-binding. The number of tryptophan residues available for NBS oxidation increased with lowering pH, and 11 out of the 13 tryptophan residues in abrin-a were eventually modified with NBS at pH 4.0, while 6 tryptophan residues were modified at pH 6.0 in the absence of specific saccharides. Modification of tryptophan residues at pH 6.0 greatly decreased the saccharide-binding ability of abrin-a, and only 2% of the hemagglutinating activity was retained after modification of 3 residues/mol. When the modification was done in the presence of lactose or galactose, 1 out of 3 residues/mol remained unmodified with a retention of a fairly high hemagglutinating activity. However, GalNAc did not show such a protective effect. NBS-oxidation led to a great loss of the fluorescence of abrin-a, and after modification of 3 tryptophan residues/mol, the fluorescence intensity at 345 nm was only 38% of that of the unmodified abrin-a. The binding of lactose to abrin-a altered the environment of the tryptophan residue at the saccharide-binding site of abrin-a, leading to a blue shift of the fluorescence spectrum. The ability to generate such fluorescence spectroscopic changes induced by lactose-binding was retained in the derivative in which 2 tryptophan residues/mol were oxidized in the presence of lactose, but not in the derivative in which 3 tryptophan residues/mol were oxidized in the absence of lactose. Importance of the tryptophan residue(s) in the saccharide-binding of abrin-a is suggested.  相似文献   

2.
Modification of tryptophan residues in castor bean hemagglutinin (CBH) with N-bromosuccinimide (NBS) was investigated in detail. Tryptophan residues accessible to NBS increased with lowering pH and six tryptophan residues/mol were oxidized at pH 3.0, while two tryptophan residues/mol were oxidized at pH 5.0. From the pH-dependence curve for tryptophan oxidation, we suggest that the extent of modification of tryptophan in CBH is influenced by an ionizable group with pKa = 3.6. The saccharide-binding activity was decreased greatly by modification of tryptophan concomitantly with a loss of fluorescence. A loss of the saccharide-binding activity was found to be principally due to the modification of two tryptophan residues/mol located on the surface of the protein molecule. In the presence of raffinose, two tryptophan residues/mol remained unmodified with retention of fairly high saccharide-binding activity. The results suggest that one tryptophan residue is involved in each saccharide-binding site on each B-chain of CBH.  相似文献   

3.
1. In order to elucidate the structure-function relation of a glucoamylase [EC 3.2.1.3, alpha-D-(1 leads to 4) glucan glucohydrolase] from Aspergillus saitoi (Gluc M1), the reaction of Gluc M1 with NBS was studied. 2. The tryptophan residues in Glu M1 were oxidized at various NBS/Gluc M1 ratios. The enzymatic activity decreased to about 80% of that of the native Gluc M1 with the oxidation of the first 2 tryptophan residues. The oxidation of these 2 tryptophan residues occurred within 0.2-0.5 s. On further oxidation of ca. 4-5 more tryptophan residues of Glu M1, the enzymatic activity of Gluc M1 decreased to almost zero (NBS/Gluc M1 = 20). Thus, the most essential tryptophan residue(s) is amongst these 4-5 tryptophan residues. 3. 7.5 tryptophan residues were found to be eventually oxidized with increasing concentrations of NBS up to NBS/Gluc M1 = 50. This value is comparable to the number of tryptophan residues which are located on the surface of the enzyme as judged from the solvent perturbation difference spectrum with ethylene glycol as perturbant. 4. In the presence of 10% soluble starch, about 5 tryptophan residues in Gluc M1 were oxidized at an NBS/Gluc M1 ratio of 20. The remaining activity of Glu M1 at this stage of oxidation was about 76%. On further oxidation, after removal of soluble starch, the enzymatic activity decreased to zero with the concomitant oxidation of 2 tryptophan residues. The results indicated that the essential tryptophan residue(s) is amongst these 2 tryptophans. 5. The UV difference spectrum induced by addition of maltose and maltitol to Gluc M1 showed 4 troughs at 281, 289, 297, and 303 nm. The latter 3 troughs were probably due to tryptophan residues of Gluc M1 and decreased with NBS oxidation.  相似文献   

4.
大黑花芸豆(Phaseolus multiflorus.Wiud)种子经匀浆、浸取、硫酸铵分级沉淀、阴离子交换层析(DEAE-Sepharose)、阳离子交换层析(CM-Sepharose)和Sepllacryl S-200分子筛层析得到凝集素样品(PML).经SDS-PAGE检测为一分子量约为28k的单一条带,Sephacryl S-100凝胶过滤测得其表观分子量约为56 kD表明PML是由两个相同亚基组成的蛋白.温度低于60℃时,PML较为稳定,当温度达80℃时,其凝血活性完全丧失;pH为5.6~9对活性影响不大,pH为12时,活性大部分丧失;高温和强碱对荧光光谱有较大影响.NBS修饰Trp结果表明,在天然状态下有3个色氨酸分子被修饰,其中第二和第三个色氨酸分子对其活性至关重要.  相似文献   

5.
A bacteriocin from cells with a mutant Clo DF13 plasmid (cloacin clp03 . immunity protein complex) and a bacteriocin from cells containing the recombinant plasmic Clo DF13 :: Tn901 (cloacin pJN82) have been isolated. Both bacteriocins like wild-type cloacin DF13, are still able to inhibit in vitro protein synthesis, but their in vivo killing activity is absent. Comparison of some physicochemical characteristics of the cloacin clp03 . immunity protein complex and wild-type cloacin complex showed no significant differences. From a comparison of the binding capacity to specific receptors on sensitive cells, the translocation through the cell wall, and the interaction with cytoplasmic membranes, it could be concluded that the cloacin clp03 complex is hampered in its translocation from the outer membrane receptor site to the cytoplasmic membrane, resulting in the observed lack in killing activity. Cloacin pJN82 is shortened at the C-terminal of the molecule by approximately ten amino acid residues. Together with its loss of in vivo killing activity it has lost its capacity to bind immunity protein. Since the immunity protein probably not only provides cloacin-producing cells with "immunity" but is also involved in the translocation of the bacteriocin to the interior of sensitive cells, the absence of this protein is probably the reason for the lack of killing activity of cloacin pJN82. The implications of these findings for the topography of the cloacin molecule as suggested by de Graaf et al. (de Graaf, F.K., Stukart, M.J., Boogerd, F.C. and Metselaar, K. (1978) Biochemistry, in press) are discussed.  相似文献   

6.
The changes of microenvironment of tryptophan residues in β-lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) β-lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing tryptophan residue. The modification rates of Trp 19 in RCM β-lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-l-tryptophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.  相似文献   

7.
The states of tryptophan residues in Abrus precatorius agglutinin (APA) were analyzed by chemical modification and solvent perturbation UV-difference spectroscopy. The number of tryptophan residues available for N-bromosuccinimide (NBS) oxidation increased with lowering pH, and 20 out of the 24 tryptophans in APA were modified at pH 3.0, while 2 tryptophans were eventually oxidized at pH 5.0. Modification of tryptophan greatly decreased the binding of APA with saccharides, and only 4% of the hemagglutinating activity was retained after modification of 4 tryptophan residues/molecule. When the modification was done in the presence of lactose or galactose, 2 tryptophan residues/molecule remained unmodified with a retention of a fairly high hemagglutinating activity. The data from solvent perturbation UV-difference spectroscopy indicated that 6 tryptophans were on the surface of the APA molecule, and 4 tryptophan residues/molecule were shielded from the perturbing effect of the solvent upon binding with lactose.

Based on these results, we proposed that in the saccharide-binding site on each B-chain of APA there exists one tryptophan residue directly involved in saccharide binding, and near the binding site there is another tryptophan residue whose state is also changeable upon binding with saccharide.  相似文献   

8.
A bacteriocin from cells with a mutant Clo DF13 plasmid (cloacin clp03· immunity protein complex) and a bacteriocin from cells containing the recombinant plasmic Clo DF13 :: Tn901 (cloacin pJN82) have been isolated. Both bacteriocins like wild-type cloacin DF13, are still able to inhibit in vitro protein synthesis, but their in vivo killing activity is absent. Comparison of some physicochemical characteristics of the cloacin clp03 · immunity protein complex and wild-type cloacin complex showed no significant differences.From a comparison of the binding capacity to specific receptors on sensitive cells, the translocation through the cell wall, and the interaction with cytoplasmic membranes, it could be concluded that the cloacin clp03 complex is hampered in its translocation from the outer membrane receptor site to the cytoplasmic membrane, resulting in the observed lack in killing activity.Cloacin pJN82 is shortened at the C-terminal of the molecule by approximately ten amino acid residues. Together with its loss of in vivo killing activity it has lost its capacity to bind immunity protein. Since the immunity protein probably not only provides cloacin-producing cells with “immunity” but is also involved in the translocation of the bacteriocin to the interior of sensitive cells, the absence of this protein is probably the reason for the lack of killing activity of cloacin pJN82.The implications of these findings for the topography of the cloacin molecule as suggested by de Graaf et al. (de Graaf, F.K., Stukart, M.J., Boogerd, F.C. and Metselaar, K. (1978) Biochemistry, in press) are discussed.  相似文献   

9.
A G Hunt  J Hong 《Biochemistry》1983,22(4):851-854
We treated the glutamine binding protein with diethyl pyrocarbonate (DEPC) and N-bromosuccinimide (NBS) to modify respectively the sole histidine and tryptophan residues and examined the effect of these modifications on the ability of the binding protein to bind glutamine as well as the ability to restore glutamine transport in membrane vesicles of Escherichia coli. Under the conditions used, both DEPC and NBS markedly inhibited the ability to restore glutamine transport in vesicles without any significant effect on glutamine binding. Moreover, saturating quantities of glutamine had no protective effect on the inactivation of the binding protein by DEPC or NBS. Fluorometric measurement and amino acid analysis indicate that the inactivation of the binding protein in restoring vesicle transport by NBS can be attributed to the oxidation of a single tryptophan residue. Similar analysis and the inability of hydroxylamine to reverse the effect of DEPC indicate that the effects of DEPC can probably be attributed to alterations of the sole histidine and/or one or more lysine residues of the binding protein. We conclude that the glutamine binding protein possesses at least two largely nonoverlapping functional domains, one responsible for glutamine binding and the other for the interaction with the other components of the glutamine transport system.  相似文献   

10.
Divercin V41 (DV41) is a class IIa bacteriocin produced by Carnobacterium divergens V41. This antilisterial peptide is homologous to pediocin PA-1 and contains two disulfide bonds. To establish the structure-activity relationships of this specific family of bacteriocin, chemical modifications and enzymatic hydrolysis were performed on DV41. Alteration of the net charge of this cationic bacteriocin by succinylation and acetylation revealed that, in a certain range, the electrostatic interactions were surprisingly not necessary for the activity of DV41. Cleavage of DV41 by endoproteinase Asp-N released two fragments N1[1-17] and N2[18-43] corresponding to the conserved hydrophilic N-terminal and the variable hydrophobic C-terminal sequences, respectively. Inhibitory assays showed that only the C-terminal fragment was active, and after trypsin cleavage at Lys42 or disulfide reduction it lost its inhibitory activity. These results suggested that both hydrophobicity and folding imposed by the Cys25-Cys43 disulfide bond were essential for antilisterial activity of the C-terminal hydrophobic peptide. Chemical oxidation of tryptophan residues by N-bromosuccinimide demonstrated that these residues were crucial for inhibitory activity since modification of any one of them rendered DV41 inactive. On the contrary, only the modification of all the three tyrosine residues caused a total loss of antilisterial activity. These latter results strengthened previous results suggesting that the N-terminal domain containing the YGNGV consensus sequence was not involved in the binding of DV41 to a potential specific receptor on listerial cells.  相似文献   

11.
Previous results indicate that a tryptophan residue(s) may interact with the sugar substrate and Cu(II) atom of galactose oxidase (Ettinger, M. J., and Kosman, D. J. (1974), Biochemistry 13, 1248). We now show that N-bromosuccinimide (NBS) reduces enzymatic activity to 2% as two tryptophans are oxidized; only four residues are easily oxidized in the holoenzyme. An enzymatic activity vs. number of residues oxidized profile suggests that this inactivation is probably associated with only one of the first 2 residues oxidized. There is no evidence for chain cleavage or modification of amino acids other than tryptophan. While substrate protection is not afforded by the sugar substrate, the activity-related tryptophan is placed within the active-site locus by spectral evidence. NBS oxidation of two tryptophans results in a marked diminution of the large copper optical-activity transition at 314 nm. Under some reaction conditions, a doubling of ellipticity in the 600-nm region of copper CD is also observed. The effects of the NBS oxidation on the CD spectra of galactose oxidase permit the assignment of the 314-nm CD band to a charge-transfer transition and the 229-nm extremum to a specific tryptophan contribution. The AZZ parameter from electron spin resonance spectra is also markedly reduced by the NBS oxidation. Moreover, while cyanide binds to the native enzyme without reducing the Cu(II) atom, cyanide rapidly reduces the Cu(II) atom to Cu(I) in the NBS-oxidized enzyme. These CD and ESR results are taken to suggest that one aspect of the inactivation by NBS oxidation may be a conversion of the pseudosquare planar copper complex in the native enzyme to a more distorted, towards tetrahedral, complex in the inactivated enzyme. Since the inactivation can be accomplished without affecting binding of the sugar substrate, tryptophan oxidation must affect catalysis per se.  相似文献   

12.
The changes of microenvironment of tryptophan residues in -lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) -lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing tryptophan residue. The modification rates of Trp 19 in RCM -lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-l-tryptophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.  相似文献   

13.
色氨酸残基在内切葡聚糖酶分子中的作用   总被引:13,自引:0,他引:13  
内切葡聚糖酶的化学修饰研究表明:色氨酸残基可能位于活性位点,与底物结合有关.荧光光谱测定指出该酶的荧光几乎都来自色氨酸残基,酶分子中色氨酸微环境对pH变化非常敏感,降低pH导致了酶分子构象发生了较大变化,配基结合使酶分子色氨酸微环境产生了改变,引发了与pH诱导不同的构象变化.  相似文献   

14.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

15.
Comparison of the circular dichroism (CD), of cloacin-immunity protein complex with that of cloacin and of a mutant cloacin lacking the ability to bind immunity protein, shows that the binding of immunity protein imposes a definite structure on the cloacin molecule. It is discussed that this structure probably is a prerequisite for an effective killing activity of the bacteriocin. The cloacin molecule itself probably has two domains, as was found by limited proteolysis. Comparison of the structure of two of the proteolytic fragments with that of the intact molecule by means of circular dichroism also suggests that cloacin is made up of a part without much periodic structure and of a part with more helicity. The former part being rather sensitive to proteolysis, the latter being comparatively insensitive.  相似文献   

16.
Cell of Enterobacter cloacae (Clo DF13) produce a bacteriocin which is characterized by its very effective killing activity against sensitive bacteria. Purification and characterization of the excreted bacteriocin has revealed that this bacteriocin consists of an equimolar complex of two plasmid-specific gene products: the cloacin and its inhibitor the immunity protein. Dissociation of the complex by treatment with sodium dodecylsulfate induces the endonucleolytic activity of the cloacin but strongly reduces the killing activity. The purified complex possesses no activity in vitro. Both cloacin and immunity protein isolated from the complex were functionally identical to cloacin and immunity protein purified from the bacteriocinogenic cells by other methods. Reconstitution of the complex results in a partial restoration of killing activity.  相似文献   

17.
The purified fetal calf serum factor that promotes cell adhesion and spreading of baby hamster kidney cells on tissue culture substrata has been subjected to a variety of chemical modifications and then tested for activity. These studies have shown that modification of the carbohydrate portions of the factor by glycosidic enzymes or by periodate oxidation did not alter its ability to promote cell spreading. On the other hand, modification of some protein portions of the factor by proteolytic enzymes or by specific modification of —COOH groups, tyrosine residues, or tryptophan residues resulted in a marked inhibition of factor activity. Modification of protein —SH groups, —NH2 groups, or methionine residues did not affect factor activity. Control experiments indicate that the various modifications were directed at the activity of the factor and not its adsorption onto the substrata.  相似文献   

18.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

19.
The effects of modifying the carbohydrate chain and amino acids on the conformation and activity of Millettia dielsiana Harms. ex Diels. lectin (MDL) were studied by hemagglutination, fluorescence and circular dichroism analysis. The modification of tryptophan residues led to a compete loss of hemagglutinating activity; however, the addition of mannose was able to prevent this loss of activity. The results indicate that two tryptophan residues are involved in the carbohydrate-binding site. Modifications of the carboxyl group residues produced an 80% loss of activity, but the presence of mannose protected against the modification. The results suggest that the carboxyl groups of aspartic and glutamic acids are involved in the carbohydrate-binding site of the lectin. However, oxidation of the carbohydrate chain and modification of the histidine and arginine residues did not affect the hemagglutinating activity of MDL. Fluorescence studies of MDL indicate that tryptophan residues are present in a relatively hydrophobic region, and the binding of mannose to MDL could quench tryptophan fluorescence without any change in λmax. The circular dichroism spectrum showed that all of these modifications affected the conformation of the MDL molecule to different extents, except the modification of arginine residues. Fluorescence quenching showed that acrylamide and iodoacetic acids are able to quench 77% and 98% of the fluorescence of tryptophan in MDL, respectively. However, KI produced a barely perceptible effect on the fluorescence of MDL, even when the concentration of I^- was 0.15M. This demonstrates that most of tryptophan residues are located in relatively hydrophobic or negatively charged areas near the surface of the MDL molecule.  相似文献   

20.
Four tryptophan residues of saccharifying alpha-amylase from B. subtilis out of eleven in total are reactive towards N-bromosuccinimide (NBS), suggesting that they are on the surface of the enzyme. This is consistent with the results of solvent perturbation difference spectrophotometry with ethylene glycol. One of four tryptophan residues was clearly distinguished from the other three in reactivity with NBS by the stopped-flow method. This most reactive tryptophan residue was not protected from modification by substrates of analogs, indicating that the tryptophan is not located in the substrate binding site. One of the other three tryptophan residues, probably the second most reactive one, is considered to be related in some way to the glycosyl transfer in the reaction of the enzyme with maltose as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号