首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red cells of adult sheep, like those of other ruminants, lack the calcium-activated potassium channel which is present in the membrane of human red cells. Since the activities of other transport systems in the sheep red cell are known to decrease during maturation of the cell or during development of the animal it was investigated whether the K+ channel is present in red cells from younger animals or in reticulocytes. Using the divalent cation ionophore A23187 to increase the intracellular Ca of intact cells, it was found that the K+-selective channel is present in foetal red cells from the foetus or newborn animal but not in reticulocytes. The presence of the channel showed no dependence on the K+ genotype of the sheep and was not associated with either "high K+"- or "low K+"-type Na+ pump. No Ca2+-dependent change in K+ permeability was found in red cells from either newborn or adult donkeys suggesting that its presence in the red cells of the foetus may not be general. The role of the K+ channel in the mammalian red cell and the relationship between the K+ channel and the Na+ pump are discussed.  相似文献   

2.
3.
Huang CC  Hall AC  Lim PH 《Life sciences》2004,75(3):329-338
The agent hemin has been demonstrated to be able to initiate a coordinated differentiation program in several cell types. In the present study, we examined the ability of hemin on inducing cell differentiation and Ca(2+)-activated K(+) channel activity in erythroleukemic K562 cells. Treating undifferentiated K562 cells with hemin (0.1 mM) for five days caused these cells to display differentiation-like characteristics including chromatin aggregation, nuclear degradation, pseudopod extension of the membrane and increased hemoglobin production. However, overall cell viability was not significantly changed by the presence of hemin. After hemin treatment for different periods, the Ca(2+)-activated K(+) channel was activated by the addition of ionomycin (1 microM), and was inhibited by either clotrimazole, charybdotoxin, or EGTA. Before hemin treatment there was no significant Ca(2+)-activated K(+) channel activity present in undifferentiated K562 cells. After hemin treatment for 5 days, a significant Ca(2+)-activated K(+) channel activity was detected. This increasing Ca(2+)-activated K(+) channel activity may be contributed from a subtype of Ca(2+)-activated K(+) channel, KCNN4. These results suggest that the ability of hemin to induce increasing Ca(2+)-activated K(+) channel activity may contribute to the mechanism of hemin-induced K562 cell differentiation.  相似文献   

4.
Large-conductance Ca2+-activated K+ (BK) channels are reported to be essential for NADPH oxidase-dependent microbial killing and innate immunity in leukocytes. Using human peripheral blood and mouse bone marrow neutrophils, pharmacological targeting, and BK channel gene-deficient (BK–/–) mice, we stimulated NADPH oxidase activity with 12-O-tetradecanoylphorbol-13-acetate (PMA) and performed patch-clamp recordings on isolated neutrophils. Although PMA stimulated NADPH oxidase activity as assessed by O2 and H2O2 production, our patch-clamp experiments failed to show PMA-activated BK channel currents in neutrophils. In our studies, PMA induced slowly activating currents, which were insensitive to the BK channel inhibitor iberiotoxin. Instead, the currents were blocked by Zn2+, which indicates activation of proton channel currents. BK channels are gated by elevated intracellular Ca2+ and membrane depolarization. We did not observe BK channel currents, even during extreme depolarization to +140 mV and after elevation of intracellular Ca2+ by N-formyl-L-methionyl-L-leucyl-phenylalanine. As a control, we examined BK channel currents in cerebral and tibial artery smooth muscle cells, which showed characteristic BK channel current pharmacology. Iberiotoxin did not block killing of Staphylococcus aureus or Candida albicans. Moreover, we addressed the role of BK channels in a systemic S. aureus and Yersinia enterocolitica mouse infection model. After 3 and 5 days of infection, we found no differences in the number of bacteria in spleen and kidney between BK–/– and BK+/+ mice. In conclusion, our experiments failed to identify functional BK channels in neutrophils. We therefore conclude that BK channels are not essential for innate immunity. killing assay; reactive oxygen species; BK-deficient mice; mice infection  相似文献   

5.
The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems.  相似文献   

6.
Single channel recordings from cultured rat skeletal muscle have revealed a large conductance (230 pS) channel with a high selectivity for K+ over Na+. In excised patches of membrane, the probability of channel opening is sensitive to micromolar concentrations of calcium ions at the intracellular surface of the patch. Channel openings appear grouped together into bursts whose duration increases with Ca2+ and membrane depolarization. Statistical analysis of the individual open times during each burst showed that there are two distinct open states of similar conductance but dissimilar average lifetimes. These channels might contribute to a macroscopic calcium-activated potassium conductance in rat skeletal muscle and other preparations.  相似文献   

7.
Single channel currents from Ca-activated K channels were recorded from cell-attached patches, which were then excised from 1321N1 human astrocytoma cells. Cells were depolarized with K (110 mM) so that the membrane potential was known in both patch configurations, and the Ca ionophore A23187 or ionomycin (20-100 microM) was used to equilibrate intracellular and extracellular [Ca] (0.3 or 1 microM). Measurements of intracellular [Ca] with the fluorescent Ca indicator quin2 verified that [Ca] equilibration apparently occurred in our experiments. Under these conditions, where both membrane potential and intracellular [Ca] were known, we found that the dependence of the channel percent open time on membrane potential and [Ca] was similar in both the cell-attached and excised patch configuration for several minutes after excision. Current-voltage relations were also similar, and autocorrelation functions constructed from the single channel currents revealed no obvious change in channel gating upon patch excision. These findings suggest that the results of studies that use excised membrane patches can be extrapolated to the K-depolarized cell-attached configuration, and that the relation between [Ca] and channel activity can be used to obtain a quantitative measure of [Ca] near the membrane intracellular surface.  相似文献   

8.
The kinetics of active K+ transport were studied in immature red blood cells cells from high-K+ and low-K+ sheep, particularly with respect to the effects of varying intracellular K+ concentration, [K]i. Comparison was made with active transport, or pump, activity in mature high-K+ and low-K+ red cells. Reticulocytes from both types of sheep had much higher maximal active K+ influxes than did mature cells. In both types of reticulocytes, and in mature high-K+ cells as well, the pump was relatively insensitive to increasing [K]i. In contrast, intracellular K+ markedly inhibited the pump in mature low-K+ cells. Active K+ transport in low-K+ reticulocytes, however, as in mature low-K+ cells, is stimulated by specific isoimmune anti-L serum. Therefore the K+ pumps of high-K+ and low-K+ reticulocytes have similar kinetic properties. Maturation of the red cells, involving inactivation of most of the pump activity in both cell types, results in mature high-K+ and low-K+ cells with K+ pumps of very different kinetic characteristics.  相似文献   

9.
大电导钙激活钾通道(BKCa)及其开放剂研究进展   总被引:2,自引:0,他引:2  
大电导钙激活钾通道(BKCa)广泛分布在哺乳动物各种组织(不含心肌细胞)中,并参与细胞内信号转导、细胞的兴奋及代谢调节等生理过程。BKCa功能异常牵涉到特发性癫痫、高血压等疾病的发生。BKCa通道是治疗高血压、尿失禁、哮喘、冠心病及缺血性脑中风等疾病的潜在药物靶点。探索高活性、高选择性、细胞通透性优良、类药性好的BKCa通道开放剂,不仅有助于阐明BKCa通道在生理病理条件下的作用机制,而且为治疗心脑血管疾病的药物研发奠定基础。对各类BKCa通道开放剂做一概述。  相似文献   

10.
Summary A barium-sensitive Ca-activated K+ channel in the luminal membrane of the tubule cells in thick ascending limb of Henle's loop is required for maintenance of the lumen positive transepithelial potential and may be important for regulation of NaCl reabsorption. In this paper we examine if the K+ channel can be solubilized and reconstituted into phospholipid vesicles with preservation of its native properties. The K+ channel in luminal plasma membrane vesicles can be quantitatively solubilized in CHAPS at a detergent/protein ratio of 3. For reconstitution, detergent is removed by passage over a column of Sephadex G 50 (coarse). K+-channel activity is assayed by measurement of86Rb+ uptake against a large opposing K+ gradient. The reconstituted K+ channel is activated by Ca2+ in the physiological range of concentration (K1/22×10–7 m at pH 7.2) as found for the K+ channel in native plasma membrane vesicles and shows the same sensitivity to inhibitors (Ba2+, trifluoperazine, calmidazolium, quinidine) and to protons. Reconstitution of the K+ channel into phospholipid vesicles with full preservation of its native properties is an essential step towards isolation and purification of the K+-channel protein.Titration with Ca2+ shows that most of the active K+ channels in reconstituted vesicles have their cytoplasmic aspect facing outward in contrast to the orientation in plasma membrane vesicles, which requires also addition of Ca2+ ionophore in order to observe Ca2+ stimulation. The reconstituted K+ channel is highly sensitive to tryptic digestion. Brief digestion leads to activation of the K+ channel in absence of Ca2+, to the level of activity seen with saturating concentrations of Ca2+. This tryptic split is located in a cytoplasmic aspect of the K+ channel that appears to be involved in opening and closing the K+ channel in response to Ca2+ binding.  相似文献   

11.
The role of ion channels in cell physiology is regulated by processes occurring after protein biosynthesis, which are critical for both channel function and targeting of channels to appropriate cell compartments. Here we apply biochemical and electrophysiological methods to investigate the role of the high-conductance, calcium-activated potassium (Maxi-K) channel C-terminal domain in channel tetramerization, association with the beta1 subunit, trafficking of the channel complex to the cell surface, and channel function. No evidence for channel tetramerization, cell surface expression, or function was observed with Maxi-K(1)(-)(323), a construct truncated three residues after the S(6) transmembrane domain. However, Maxi-K(1)(-)(343) and Maxi-K(1)(-)(441) are able to form tetramers and to associate with the beta1 subunit. Maxi-K(1)(-)(343)-beta1 and Maxi-K(1)(-)(441)-beta1 complexes are efficiently targeted to the cell surface and cannot be pharmacologically distinguished from full-length channels in binding experiments but do not form functional channels. Maxi-K(1)(-)(651) forms tetramers and associates with beta1; however, the complex is not present at the cell surface, but is retained intracellularly. Maxi-K(1)(-)(651) surface expression and channel function can be fully rescued after coexpression with its C-terminal complement, Maxi-K(652)(-)(1113). However coexpression of Maxi-K(1)(-)(343) and Maxi-K(1)(-)(441) with their respective C-terminal complements did not rescue channel function. Together, these data demonstrate that the domain(s) in the Maxi-K channel necessary for formation of tetramers, coassembly with the beta1 subunit, and cell surface expression resides within the S(0)-S(6) linker domain of the protein, and that structural constraints within the gating ring in the C-terminal region can regulate trafficking and function of constructs truncated in this region.  相似文献   

12.
The cell-attached and inside-out patch clamp techniques were used to record single-channel currents from human epidermal fibroblasts. A large-conductance channel (320 pS in symmetric 140 mM KCl) with high potassium selectivity was observed in many patches, particularly those located at the borders of the cells. The channel exhibited both voltage and calcium sensitivity and, therefore, was regarded as a variety of the large-conductance calcium-activated potassium channels reported in many preparations. Probability density functions, fitted to histograms of open and closed time durations at 35 degrees C, usually displayed a minimum of one open state and two closed states. However, kinetic analysis by the fractal method suggested more complicated behavior, particularly for the closed condition. It was not uncommon to observe several channels in one patch. This was distinguishable from the presence of subconductances, which were also observed. Although this channel could have many roles, it seems likely to mediate the calcium-activated conductance that underlies the hyperpolarizing response of fibroblasts to mechanical, electrical, or chemical stimuli.  相似文献   

13.
A monoclonal antibody is described that has been generated in the mouse against cultured human blood monocytes/macrophages. The antibody, designated 25F9, belongs to the IgG1 subclass, detects antigens of m.w. 86,000, and does not react with freshly isolated blood monocytes but reacts with monocytes after 3 days of culture. The expression of the 25F9 antigen on macrophages increases with culture time. Furthermore, the antibody is negative on platelets, granulocytes, lymphocytes, and a large number of human cell lines except the two melanoma lines MeWo and Mel 57. In cryostat sections of normal human tissue (skin, lung, liver, thymus) and of inflammatory or neoplastic tissue (cutaneous lymphoma, eczema, BCG-granuloma, and melanoma), the antibody reacts with scattered macrophages in the dermis but not with epidermal Langerhans cells, with alveolar macrophages, with liver Kupffer cells, and with scattered macrophages in the cortex and medulla of thymus. In eczema, BCG-granuloma, and cutaneous lymphoma, only a few infiltrating macrophages were stained. On the other hand, a large number of macrophages and melanophages reacted positively in melanoma. In some cases melanoma cells also stained weakly positive. Thus, the antibody detects a differentiation antigen preferentially expressed on mature, tissue-fixed macrophages and absent from blood monocytes.  相似文献   

14.
A calcium-activated cation-selective channel in rat cultured Schwann cells   总被引:4,自引:0,他引:4  
Calcium-activated channels, in the plasma membrane of rat cultured Schwann cells were studied in isolated 'inside-out' membrane patches. With identical (150 mM NaCl) solutions on either side of the membrane, a single channel conductance of 32 pS was calculated for inward current; the conductance was somewhat less for outward current. The channel is about equally permeable to sodium and potassium ions, but is not detectably permeable to either chloride or calcium. Under our experimental conditions the channel is activated by high (more than 10(-4) M) concentrations of calcium and is sensitive to voltage, channel activity increasing with membrane depolarization.  相似文献   

15.
Nitric oxide (NO) released from the endothelium or from NO-donors is a powerful vasodilator. Its effect is mediated partly by vascular smooth muscle high conductance calcium-activated potassium (Kca) channels. Contradictory data exist as to whether NO activated the KCa channel directly or indirectly via protein kinase G (PKG). Thus the hypothesis that NO-donors can activate the KCa directly was investigated using the patch-clamp technique and freshly isolated smooth muscle cells from the rat tail artery. In inside-out experiments, the activity of KCa-channels was increased 1.61 +/- 0.20-fold (n = 10) by 10 microM SNP and 1.45 +/- 0.17-fold (n = 8) by 10 microM SNAP. However, the activity of KCa channels was also increased 1.46 +/- 0.20-fold (n = 8) by addition of the experimental bath solution. Thus these results suggest that NO released from NO-donors cannot activate KCa channel of the rat tail artery smooth muscle cells directly.  相似文献   

16.
Resting muscle thermogenesis as controlled by vasocontrictors was compared in rat hindlimb and cardiac muscle. An α-adrenergic agonist combination of phenylephrine+atenolol increased oxygen uptake and perfusion pressure in the constant flow hindlimb and neither increase was blocked by 10 μM tetrodotoxin. The same adrenergic combination also increased oxygen uptake and perfusion pressure in the perfused heart but the former along with beating was completely blocked by tetrodotoxin. Vasoconstriction by phenylephrine occurs in the heart but is not linked to thermogenic increases as in hindlimb, implying that all metabolic energy in heart is conserved for contractile activity. The findings highlight a fundamental difference between skeletal and cardiac muscle.  相似文献   

17.
目的:研究高血压病患者肠系膜动脉平滑肌细胞钙激活钾通道(KCa)的功能活动。方法:应用膜片钳制技术内面向外式单通道记录方法。结果:①人肠系膜动脉平滑肌细胞KCa开放具有电压依赖性。KCa通道电导在高血压组、正常组分别为191.4pS、197.7pS。胞内侧应用TEA可阻断通道。②增加浴液中Ca2 浓度(从0增至10-8、10-7、5×10-7、10-6mol/L),各组KCa开放概率(Po)均呈浓度依赖性增加,高血压组Po从0.016增至0.023、0.031、0.053、0.094,正常组Po从0.004增至0.023、0.041、0.072、0.184。通道平均开放时间延长,平均关闭时间缩短。③Ca2 浓度为0时,高血压组KCa开放概率明显高于正常组,在其它Ca2 浓度下高血压组KCa开放概率等于或低于正常组。结论:高血压病患者肠系膜动脉平滑肌细胞KCa的Ca2 敏感性较低,可能促进高血压的发生。  相似文献   

18.
The passive K influx in low K(LK) red blood cells of sheep saturates with increasing external K concentration, indicating that this mode of transport is mediated by membrane-associated sites. The passive K influx, iMLK, is inhibited by external Na. Isoimmune anti-L serum, known to stimulate active K transport in LK sheep red cells, inhibits iMLK about twofold. iMLK is affected by changes in intracellular K concentration, [K]i, in a complex fashion: increasing [K]i from near zero stimulates iMLK, while further increases in [K]i, above 3 mmol/liter cells, inhibit iMLK. The passive K influx is not mediated by K-K exchange diffusion. The effects of anti-L antibody and [K]i on passive cation transport are specific for K: neither factor affects passive Na transport. The common characteristics of passive and active K influx suggest that iMLK is mediated by inactive Na-K pump sites, and that the inability to translocate Na characterizes the inactive pumps. Anti-L antibody stimulates the K pump in reticulocytes of LK sheep. However, anti-L has no effect on iMLK in these cells, apparently because reticulocytes do not have the inactive pump sites which, in mature LK cells, are a consequence of the process of maturation of circulating LK cells. The results also indicate that anti-L alters the maximum velocity of both active and passive K fluxes by converting pumps sites from a form mediating passive K influx to an actively transporting form.  相似文献   

19.
Summary Cell-attached and inside-out patch-clamp experiments (O.P. Hamill et al.,Pfluegers Arch. 391: 85–100, 1981) were undertaken in order to characterize the molecular mechanisms responsible for the calcium-dependent potassium permeability observed in HeLa cancer cells. Our result essentially indicate that the HeLa cell external membrane contains potassium channels whose activity can be triggered within an internal calcium concentration range of 0.1 to 1 m. This particular channel was found to behave as an inward rectifier in symmetrical 200mm KCl with a conductance of 50 and 10 pS at large negative and large positive membrane potentials, respectively.I/V curves were also measured in 10, 20, 75, 200 and 300mm KCl and the data interpreted in terms of a one-site-two-barrier model. The channel activity appeared to be nearly voltage independent within the voltage range –100 to +100mV, an increase ofP o, the open channel probability, being observed at large negative potentials only. In addition, the results obtained from inside-out experiments on the relationship betweenP o and the cytoplasmic freecalcium concentration have led to conclude that four calcium ions are probably required in order to open the channel. In this regard it was found that an increase of the internal free-calcium level affects more the number of channel openings per second than the actual channel mean lifetime. Finally, it is concluded following a time interval distribution analysis, that this particular channel has at least three closed states and two open states.  相似文献   

20.
Immature and mature red cells from anaemic homozygous and heterozygous low potassium (LK) type sheep were tested for the presence of the L antigen and for active potassium uptake. Evidence was obtained for the presence of L antigen on immature as well as mature cells, but immature cells had a higher intracellular potassium concentration and increased rate of active potassium transport which was only slightly enhanced after sensitization with L antiserum. The red cells which entered the circulation in the later phases of recovery from anaemia were not haemolysed by anti-L as readily as normal cells, but showed normal haemolytic reactions with other blood typing reagents.
It is suggested that, if the L antigen is directly concerned with suppressing part of the potassium pump in mature LK erythrocytes, its effect must be mediated by changes which occur during the final maturation processes of the red cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号